Menu Close

Given-that-p-2-3-q-4-m-and-r-n-4-If-p-q-r-is-a-unit-vector-find-the-value-of-m-and-n-




Question Number 115793 by ZiYangLee last updated on 28/Sep/20
Given that p_∽ = (((  2)),((−3)) ) , q_∽ = (((−4)),((   m)) ) and r_∽ = ((n),(4) )  If p_∽ +q_∽ −r_∽  is a unit vector, find the value  of m and n.
$$\mathrm{Given}\:\mathrm{that}\:\underset{\backsim} {{p}}=\begin{pmatrix}{\:\:\mathrm{2}}\\{−\mathrm{3}}\end{pmatrix}\:,\:\underset{\backsim} {{q}}=\begin{pmatrix}{−\mathrm{4}}\\{\:\:\:{m}}\end{pmatrix}\:\mathrm{and}\:\underset{\backsim} {{r}}=\begin{pmatrix}{{n}}\\{\mathrm{4}}\end{pmatrix} \\ $$$$\mathrm{If}\:\underset{\backsim} {{p}}+\underset{\backsim} {{q}}−\underset{\backsim} {{r}}\:\mathrm{is}\:\mathrm{a}\:\mathrm{unit}\:\mathrm{vector},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:{m}\:\mathrm{and}\:{n}. \\ $$
Answered by $@y@m last updated on 29/Sep/20
p=2i−3j  q=−4i+mj  r=ni+4j  p+q−r=(2−4−n)i+(−3+m−4)j                  =(−2−n)i+(m−7)j  ∵ p+q−r is a unit vector.  ∴∣p+q−r∣=1  ⇒(−2−n)^2 +(m−7)^2 =1 ...(A)  Infinite values are possible for m, n  satisfying (A)
$${p}=\mathrm{2}{i}−\mathrm{3}{j} \\ $$$${q}=−\mathrm{4}{i}+{mj} \\ $$$${r}={ni}+\mathrm{4}{j} \\ $$$${p}+{q}−{r}=\left(\mathrm{2}−\mathrm{4}−{n}\right){i}+\left(−\mathrm{3}+{m}−\mathrm{4}\right){j} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(−\mathrm{2}−{n}\right){i}+\left({m}−\mathrm{7}\right){j} \\ $$$$\because\:{p}+{q}−{r}\:\mathrm{is}\:\mathrm{a}\:\mathrm{unit}\:\mathrm{vector}. \\ $$$$\therefore\mid{p}+{q}−{r}\mid=\mathrm{1} \\ $$$$\Rightarrow\left(−\mathrm{2}−{n}\right)^{\mathrm{2}} +\left({m}−\mathrm{7}\right)^{\mathrm{2}} =\mathrm{1}\:…\left({A}\right) \\ $$$${Infinite}\:{values}\:{are}\:{possible}\:{for}\:{m},\:{n} \\ $$$${satisfying}\:\left({A}\right) \\ $$
Commented by ZiYangLee last updated on 29/Sep/20
Hmmm...
$$\mathrm{Hmmm}… \\ $$
Commented by ZiYangLee last updated on 05/Oct/20
you are right
$$\mathrm{you}\:\mathrm{are}\:\mathrm{right} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *