Menu Close

Given-that-p-q-are-primes-and-pq-divides-p-2-q-2-4-How-many-possible-values-does-p-q-have-




Question Number 110357 by Aina Samuel Temidayo last updated on 28/Aug/20
Given that p,q are primes and pq  divides p^2 +q^2 −4. How many  possible values does ∣p−q∣ have?
Giventhatp,qareprimesandpqdividesp2+q24.Howmanypossiblevaluesdoespqhave?
Commented by Aina Samuel Temidayo last updated on 28/Aug/20
Any help please?
Anyhelpplease?
Answered by Rasheed.Sindhi last updated on 28/Aug/20
pq ∣ p^2 +q^2 −4 (given)  p^2 +q^2 −4=kpq (say)   •Case-1: p=2 (Or q=2 due to symmetricity  no difference)  p^2 +q^2 −4=kpq⇒2q^2 −4=kq^2    q^2 =(4/(2−k))⇒k=1⇒q=±2  (p,q)=(2,2),(−2,−2),(2,−2),(−2,2)  ∣2−2∣=∣−2−(−2)∣=0  ∣2−(−2)∣=∣−2−2∣=4  •Case-2:p,q both odd prime  Let p=2u+1 & q=2v+1  (2u+1)^2 +(2v+1)^2 −4=k(2u+1)(2v+1)  4u^2 +4u+1+4v^2 +4v+1−4           =k(4uv+2(u+v)+1)  4u^2 +4u+4v^2 +4v−2           =k(4uv+2(u+v)+1)  Left side is even  ∴ Right side is even  4uv+2(u+v)+1∈O⇒k∈E  So now we can let  p^2 +q^2 −4=kpq⇒p^2 +q^2 −4=2mpq    Continue
pqp2+q24(given)p2+q24=kpq(say)Case1:p=2(Orq=2duetosymmetricitynodifference)p2+q24=kpq2q24=kq2q2=42kk=1q=±2(p,q)=(2,2),(2,2),(2,2),(2,2)22∣=∣2(2)∣=02(2)∣=∣22∣=4Case2:p,qbothoddprimeLetp=2u+1&q=2v+1(2u+1)2+(2v+1)24=k(2u+1)(2v+1)4u2+4u+1+4v2+4v+14=k(4uv+2(u+v)+1)4u2+4u+4v2+4v2=k(4uv+2(u+v)+1)LeftsideisevenRightsideiseven4uv+2(u+v)+1OkESonowwecanletp2+q24=kpqp2+q24=2mpqContinue
Commented by Rasheed.Sindhi last updated on 28/Aug/20
I′m trying...The forum is full of  experts, so no worry!
ImtryingTheforumisfullofexperts,sonoworry!
Commented by Aina Samuel Temidayo last updated on 28/Aug/20
Thanks, but Sir I don′t know how to  finish it. I will be glad if you can for  me.
Thanks,butSirIdontknowhowtofinishit.Iwillbegladifyoucanforme.
Answered by 1549442205PVT last updated on 29/Aug/20
From the hypothesis pq∣(p^2 +q^2 −4)  we have p^2 +q^2 −4=kpq(k∈N^∗ )(1)  ⇔(p−q)^2 +2pq−4 =kpq  ⇔(p−q+2)(p−q−2)=(k−2)pq(∗)  Since p,q play  equal role in above  equality,WLOG we can assume that p≥q  i)Case  p=q then 2p^2 −4=kp^2   ⇔(2−k)p^2 =4⇒k=1(due to p≥2)  ⇒p=q=2⇒∣p−q∣=0  ii)Case p>q.  •If k=2 then(1)⇔(p−q)^2 =4⇔p−q=2  •If k≠2  From (∗) since p,q∈P,  we infer has two cases  a) If p∣(p−q+2)⇒((p−q+2)/p)=m∈N^∗   (due to p−q+2≥1)⇒((2−q)/p)=m−1≥0  ⇒2−q≥0⇒2−q=0⇒q=2.Replace  into (1)we get p^2 =2kp⇒p=2k⇒k=1  (due to p is prime)⇒p=q=2.Above done  b)If p∣(p−q−2).Since p−q−2>0,  ((p−q−2)/p)=n∈N^∗ ⇒n≥1  ⇔((−q−2)/p)=n−1≥0.This is impossible  Thus,answer of given problem is  ∣p−q∣∈{0,2}
Fromthehypothesispq(p2+q24)wehavep2+q24=kpq(kN)(1)(pq)2+2pq4=kpq(pq+2)(pq2)=(k2)pq()Sincep,qplayequalroleinaboveequality,WLOGwecanassumethatpqi)Casep=qthen2p24=kp2(2k)p2=4k=1(duetop2)p=q=2⇒∣pq∣=0ii)Casep>q.Ifk=2then(1)(pq)2=4pq=2Ifk2From()sincep,qP,weinferhastwocasesa)Ifp(pq+2)pq+2p=mN(duetopq+21)2qp=m102q02q=0q=2.Replaceinto(1)wegetp2=2kpp=2kk=1(duetopisprime)p=q=2.Abovedoneb)Ifp(pq2).Sincepq2>0,pq2p=nNn1q2p=n10.ThisisimpossibleThus,answerofgivenproblemispq∣∈{0,2}
Commented by Aina Samuel Temidayo last updated on 29/Aug/20
Thanks but what do you mean by ′p,q   play equal role in the above equality′?
Thanksbutwhatdoyoumeanbyp,qplayequalroleintheaboveequality?
Commented by 1549442205PVT last updated on 30/Aug/20
p,q have  equal roles ,when change their  positions for each other then the equality  don′t change
p,qhaveequalroles,whenchangetheirpositionsforeachotherthentheequalitydontchange

Leave a Reply

Your email address will not be published. Required fields are marked *