Menu Close

Given-that-sinh-1-y-sech-1-y-show-that-y-2-5-1-2-




Question Number 190935 by Spillover last updated on 14/Apr/23
Given that        sinh^(−1) y=sech^(−1) y      show that         y^2 =(((√5)−1)/2)
Giventhatsinh1y=sech1yshowthaty2=512
Answered by mehdee42 last updated on 14/Apr/23
sinh^(−1) y=a⇒y=sinha=((e^a −e^(−a) )/2)  sech^(−1) y=a⇒y=secha=(2/(e^a +e^(−a) ))  ((e^a −e^(−a) )/2)=(2/(e^a +e^(−a) ))⇒e^(2a) −e^(−2a) =4  if  e^(2a) =u⇒u^2 −u−1=0⇒u=((1+(√5))/2)=e^(2a)    y^2 =((e^(2a) +e^(−2a) −2)/4)=((((1+(√5))/2)−((1−(√5))/2)−2)/4)=(((√5)−1)/2)
sinh1y=ay=sinha=eaea2sech1y=ay=secha=2ea+eaeaea2=2ea+eae2ae2a=4ife2a=uu2u1=0u=1+52=e2ay2=e2a+e2a24=1+5215224=512
Commented by Spillover last updated on 15/Apr/23
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *