Menu Close

Given-that-tan-and-tan-are-the-roots-of-the-equation-x-2-3ax-4a-1-0-where-a-gt-1-and-pi-2-pi-2-Evaluate-tan-2-




Question Number 156426 by ZiYangLee last updated on 11/Oct/21
Given that tan α and tan β are the roots   of the equation x^2 +3ax+4a+1=0,   where a>1 and α,β∈(−(π/2),(π/2)).   Evaluate tan(((α+β)/2)).
Giventhattanαandtanβaretherootsoftheequationx2+3ax+4a+1=0,wherea>1andα,β(π2,π2).Evaluatetan(α+β2).
Answered by mr W last updated on 11/Oct/21
tan α+tan β=−3a  tan αtan β=4a+1  tan (α+β)=((−3a+4a+1)/(1+3a(4a+1)))=((a+1)/(12a^2 +3a+1))  =((2tan ((α+β)/2))/(1−tan^2  ((α+β)/2)))=((2t)/(1−t^2 ))  ((2t)/(1−t^2 ))=((a+1)/(12a^2 +3a+1))  (a+1)t^2 +2(12a^2 +3a+1)t−(a+1)=0  t=tan ((α+β)/2)=−(((12a^2 +3a+1)±(√((12a^2 +3a+1)^2 +(a+1)^2 )))/(a+1))
tanα+tanβ=3atanαtanβ=4a+1tan(α+β)=3a+4a+11+3a(4a+1)=a+112a2+3a+1=2tanα+β21tan2α+β2=2t1t22t1t2=a+112a2+3a+1(a+1)t2+2(12a2+3a+1)t(a+1)=0t=tanα+β2=(12a2+3a+1)±(12a2+3a+1)2+(a+1)2a+1

Leave a Reply

Your email address will not be published. Required fields are marked *