Given-that-tan-and-tan-are-the-roots-of-the-equation-x-2-3ax-4a-1-0-where-a-gt-1-and-pi-2-pi-2-Evaluate-tan-2- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 156426 by ZiYangLee last updated on 11/Oct/21 Giventhattanαandtanβaretherootsoftheequationx2+3ax+4a+1=0,wherea>1andα,β∈(−π2,π2).Evaluatetan(α+β2). Answered by mr W last updated on 11/Oct/21 tanα+tanβ=−3atanαtanβ=4a+1tan(α+β)=−3a+4a+11+3a(4a+1)=a+112a2+3a+1=2tanα+β21−tan2α+β2=2t1−t22t1−t2=a+112a2+3a+1(a+1)t2+2(12a2+3a+1)t−(a+1)=0t=tanα+β2=−(12a2+3a+1)±(12a2+3a+1)2+(a+1)2a+1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-156421Next Next post: in-a-second-order-differenti-equation-a-4-henry-inductor-an-8-ohm-resistor-and-o-2-farad-capacito-are-connected-in-series-with-the-temperature-of-the-battery-with-ggl-E-80-sin-3t-solid-0-the-charg Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.