Menu Close

Given-that-the-curve-y-2x-2-19x-18-does-not-intersect-the-line-y-x-k-find-the-largest-integer-of-k-




Question Number 120705 by ZiYangLee last updated on 02/Nov/20
Given that the curve y=2x^2 −19x+18  does not intersect the line y=x+k,  find the largest integer of k.
Giventhatthecurvey=2x219x+18doesnotintersecttheliney=x+k,findthelargestintegerofk.
Commented by john santu last updated on 02/Nov/20
⇒2x^2 −19x+18=x+k  ⇒2x^2 −20x+18−k=0  take discriminant < 0  ⇒400−4.2.(18−k)<0  ⇒256+8k<0  ⇒32+k<0 , k<−32 so we get k=−33  the largest integer of k
2x219x+18=x+k2x220x+18k=0takediscriminant<04004.2.(18k)<0256+8k<032+k<0,k<32sowegetk=33thelargestintegerofk

Leave a Reply

Your email address will not be published. Required fields are marked *