Menu Close

Given-that-the-function-f-R-R-is-defined-by-f-x-x-n-For-what-values-of-n-if-any-is-fof-f-f-For-each-of-these-values-of-n-find-fof-




Question Number 24764 by NECx last updated on 25/Nov/17
Given that the function f:R→R  is defined by f(x)=x^n .For what  values of n,if any,is fof=f.f?  For each of these values of n find  fof.
Giventhatthefunctionf:RRisdefinedbyf(x)=xn.Forwhatvaluesofn,ifany,isfof=f.f?Foreachofthesevaluesofnfindfof.
Answered by mrW1 last updated on 25/Nov/17
(x^n )^n =x^n ×x^n   x^(n×n) =x^(n+n)   ⇒n×n=n+n  ⇒n=0 or 2    with n=0  f(x)=1  fof=1    with n=2  f(x)=x^2   fof=x^4
(xn)n=xn×xnxn×n=xn+nn×n=n+nn=0or2withn=0f(x)=1fof=1withn=2f(x)=x2fof=x4
Answered by ajfour last updated on 25/Nov/17
fof=f[f(x)]=f(x^n )=(x^n )^n =x^((n^2 ))   f.f=(x^n )^2 =x^(2n)   fof=f.f  ⇒    n^2 =2n  or    n(n−2)=0    ⇒   n=0, 2  for n=0 :  f(x)=x^0 =1   hence  fof=1  for n=2 :  f(x)=x^2    hence    fof=x^4  .
fof=f[f(x)]=f(xn)=(xn)n=x(n2)f.f=(xn)2=x2nfof=f.fn2=2norn(n2)=0n=0,2forn=0:f(x)=x0=1hencefof=1forn=2:f(x)=x2hencefof=x4.

Leave a Reply

Your email address will not be published. Required fields are marked *