Menu Close

Given-that-the-sequence-a-n-is-defined-as-a-1-2-and-a-n-1-a-n-2n-1-for-all-n-1-Find-the-last-two-digits-of-a-100-




Question Number 115133 by ZiYangLee last updated on 23/Sep/20
Given that the sequence {a_n } is defined  as a_1 =2, and a_(n+1) =a_n +(2n−1) for all n≥1.  Find the last two digits of a_(100) .
Giventhatthesequence{an}isdefinedasa1=2,andan+1=an+(2n1)foralln1.Findthelasttwodigitsofa100.
Answered by Olaf last updated on 23/Sep/20
Let S_n  = Σ_(k=1) ^n a_k   S_(n+1) −S_n  = Σ_(k=1) ^(n+1) a_k −Σ_(k=1) ^n a_k   S_(n+1) −S_n  = a_1 +Σ_(k=1) ^n a_(k+1) −Σ_(k=1) ^n a_k   S_(n+1) −S_n  = a_1 +Σ_(k=1) ^n (a_(k+1) −a_k )  S_(n+1) −S_n  = 2+Σ_(k=1) ^n (2k−1)  S_(n+1) −S_n  = 2+(2Σ_(k=1) ^n k)−n  S_(n+1) −S_n  = 2+2((n(n+1))/2)−n  S_(n+1) −S_n  = n^2 +2  But S_(n+1) −S_n  = a_(n+1)   ⇒ a_(n+1)  = n^2 +2  a_(100)  = 99^2 +2  a_(100)  = 10000−200+1+2 = 9803  Two last digits are 03
LetSn=nk=1akSn+1Sn=n+1k=1aknk=1akSn+1Sn=a1+nk=1ak+1nk=1akSn+1Sn=a1+nk=1(ak+1ak)Sn+1Sn=2+nk=1(2k1)Sn+1Sn=2+(2nk=1k)nSn+1Sn=2+2n(n+1)2nSn+1Sn=n2+2ButSn+1Sn=an+1an+1=n2+2a100=992+2a100=10000200+1+2=9803Twolastdigitsare03
Answered by Dwaipayan Shikari last updated on 23/Sep/20
a_(n+1) =a_n +(2n−1)  a_2 =a_1 +(2−1)⇒a_2 =3  a_3 =3+(4−1)=6  a_(100) =a_(99) +(2.99−1)  a_(100) =(a_(98) +2.98−1)+2.99−1  a_(100) =a_1 +2(1+2+....99)−99  a_(100) =2+99.100−99  a_(100) =2+99^2 =9803
an+1=an+(2n1)a2=a1+(21)a2=3a3=3+(41)=6a100=a99+(2.991)a100=(a98+2.981)+2.991a100=a1+2(1+2+.99)99a100=2+99.10099a100=2+992=9803
Answered by Bird last updated on 24/Sep/20
a_(n+1) −a_n =2n−1 ⇒  Σ_(k=1) ^(n−1) (a_(k+1) −a_k )=Σ_(k=1) ^(n−1) (2k−1) ⇒  a_2 −a_1  +a_3 −a_2  +...a_n −a_(n−1)   =2Σ_(k=1) ^(n−1) k−(n−1)  =2.(((n−1)n)/2)−n+1 =n^2 −n−n+1  =n^2 −2n+1 ⇒a_n =n^2 −2n+1+2  =n^2 −2n+3 ⇒a_(100) =100^2 −2.100 +3  =10000−200 +3  =9803
an+1an=2n1k=1n1(ak+1ak)=k=1n1(2k1)a2a1+a3a2+anan1=2k=1n1k(n1)=2.(n1)n2n+1=n2nn+1=n22n+1an=n22n+1+2=n22n+3a100=10022.100+3=10000200+3=9803

Leave a Reply

Your email address will not be published. Required fields are marked *