Menu Close

Given-that-the-solution-set-of-the-quadratic-inequality-ax-2-bx-c-gt-0-is-2-3-Then-the-solution-set-of-the-inequality-cx-2-bx-a-lt-0-will-be-




Question Number 162366 by cortano last updated on 29/Dec/21
 Given that the solution set of the    quadratic inequality ax^2 +bx+c >0   is (2,3). Then the solution set    of the inequality cx^2 +bx+a <0    will be
Giventhatthesolutionsetofthequadraticinequalityax2+bx+c>0is(2,3).Thenthesolutionsetoftheinequalitycx2+bx+a<0willbe
Answered by mr W last updated on 29/Dec/21
a<0  x^2 +(b/a)x+(c/a)=(x−2)(x−3)  (b/a)=−(2+3)=−5 ⇒b=−5a  (c/a)=2×3=6 ⇒c=6a  cx^2 +bx+a=a(6x^2 −5x+1)<0  since a<0,  ⇒6x^2 −5x+1>0  (2x−1)(3x−1)>0  ⇒x<(1/3) or x>(1/2)  i.e. x∈(−∞,(1/3)) ∧ ((1/2),+∞)
a<0x2+bax+ca=(x2)(x3)ba=(2+3)=5b=5aca=2×3=6c=6acx2+bx+a=a(6x25x+1)<0sincea<0,6x25x+1>0(2x1)(3x1)>0x<13orx>12i.e.x(,13)(12,+)

Leave a Reply

Your email address will not be published. Required fields are marked *