Menu Close

Given-that-the-sum-of-infinity-of-geometric-series-a-2ar-4ar-2-8ar-3-a-2r-n-1-is-3-and-the-sum-of-infinity-of-geometric-series-a-ar-ar-2-ar-3-ar-n-1-is-k-find-the-range-of-




Question Number 115946 by ZiYangLee last updated on 29/Sep/20
Given that the sum of infinity of geometric  series a−2ar+4ar^2 −8ar^3 +...a(−2r)^(n−1)  +...is 3  and the sum of infinity of geometric series  a+ar+ar^2 +ar^3 +...ar^(n−1) +... is k,   find the range of values of k.
$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{infinity}\:\mathrm{of}\:\mathrm{geometric} \\ $$$$\mathrm{series}\:{a}−\mathrm{2}{ar}+\mathrm{4}{ar}^{\mathrm{2}} −\mathrm{8}{ar}^{\mathrm{3}} +…{a}\left(−\mathrm{2}{r}\right)^{{n}−\mathrm{1}} \:+…\mathrm{is}\:\mathrm{3} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{infinity}\:\mathrm{of}\:\mathrm{geometric}\:\mathrm{series} \\ $$$${a}+{ar}+{ar}^{\mathrm{2}} +{ar}^{\mathrm{3}} +…{ar}^{{n}−\mathrm{1}} +…\:\mathrm{is}\:{k},\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{k}. \\ $$
Answered by Dwaipayan Shikari last updated on 29/Sep/20
a−2ar+4ar^2 −8ar^3 +....=a((1/(1+2r)))  (a/(1+2r))=3⇒3+6r=a⇒r=((a−3)/6)  a(1+r+r^2 +...)=(a/(1−r))=(a/(1−((a−3)/6)))=(a/(9−a))=k  k{0,(1/8),(2/7),(1/2),(4/5),(5/4),2,(7/2),8}  0≤k≤8
$$\mathrm{a}−\mathrm{2ar}+\mathrm{4ar}^{\mathrm{2}} −\mathrm{8ar}^{\mathrm{3}} +….=\mathrm{a}\left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2r}}\right) \\ $$$$\frac{\mathrm{a}}{\mathrm{1}+\mathrm{2r}}=\mathrm{3}\Rightarrow\mathrm{3}+\mathrm{6r}=\mathrm{a}\Rightarrow\mathrm{r}=\frac{\mathrm{a}−\mathrm{3}}{\mathrm{6}} \\ $$$$\mathrm{a}\left(\mathrm{1}+\mathrm{r}+\mathrm{r}^{\mathrm{2}} +…\right)=\frac{\mathrm{a}}{\mathrm{1}−\mathrm{r}}=\frac{\mathrm{a}}{\mathrm{1}−\frac{\mathrm{a}−\mathrm{3}}{\mathrm{6}}}=\frac{\mathrm{a}}{\mathrm{9}−\mathrm{a}}=\mathrm{k} \\ $$$$\mathrm{k}\left\{\mathrm{0},\frac{\mathrm{1}}{\mathrm{8}},\frac{\mathrm{2}}{\mathrm{7}},\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{4}}{\mathrm{5}},\frac{\mathrm{5}}{\mathrm{4}},\mathrm{2},\frac{\mathrm{7}}{\mathrm{2}},\mathrm{8}\right\} \\ $$$$\mathrm{0}\leqslant\mathrm{k}\leqslant\mathrm{8} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *