Menu Close

Given-that-the-sum-of-infinity-of-geometric-series-a-2ar-4ar-2-8ar-3-a-2r-n-1-is-3-and-the-sum-of-infinity-of-geometric-series-a-ar-ar-2-ar-3-ar-n-1-is-k-find-the-range-of-




Question Number 115946 by ZiYangLee last updated on 29/Sep/20
Given that the sum of infinity of geometric  series a−2ar+4ar^2 −8ar^3 +...a(−2r)^(n−1)  +...is 3  and the sum of infinity of geometric series  a+ar+ar^2 +ar^3 +...ar^(n−1) +... is k,   find the range of values of k.
Giventhatthesumofinfinityofgeometricseriesa2ar+4ar28ar3+a(2r)n1+is3andthesumofinfinityofgeometricseriesa+ar+ar2+ar3+arn1+isk,findtherangeofvaluesofk.
Answered by Dwaipayan Shikari last updated on 29/Sep/20
a−2ar+4ar^2 −8ar^3 +....=a((1/(1+2r)))  (a/(1+2r))=3⇒3+6r=a⇒r=((a−3)/6)  a(1+r+r^2 +...)=(a/(1−r))=(a/(1−((a−3)/6)))=(a/(9−a))=k  k{0,(1/8),(2/7),(1/2),(4/5),(5/4),2,(7/2),8}  0≤k≤8
a2ar+4ar28ar3+.=a(11+2r)a1+2r=33+6r=ar=a36a(1+r+r2+)=a1r=a1a36=a9a=kk{0,18,27,12,45,54,2,72,8}0k8

Leave a Reply

Your email address will not be published. Required fields are marked *