Menu Close

Given-that-x-1-3-x-are-lengths-of-the-sides-of-a-right-angled-triangle-pythagoras-tripple-find-the-value-of-x-




Question Number 35512 by Rio Mike last updated on 19/May/18
 Given that (x+1,3,x) are lengths  of the sides of a right angled  triangle(pythagoras tripple)  find the value of x.
$$\:{Given}\:{that}\:\left({x}+\mathrm{1},\mathrm{3},{x}\right)\:{are}\:{lengths} \\ $$$${of}\:{the}\:{sides}\:{of}\:{a}\:{right}\:{angled} \\ $$$${triangle}\left({pythagoras}\:{tripple}\right) \\ $$$${find}\:{the}\:{value}\:{of}\:{x}. \\ $$
Answered by Rasheed.Sindhi last updated on 20/May/18
Case-1: x+1>3   ∴ x+1 is hypatenuse     (x+1)^2 =(3)^2 +x^2   x^2 +2x+1=9+x^2   2x=9−1=8  x=4  x+1=4+1=5  (5,3,4) is required pythagorean triplet.  Case-2:3>x+1       ∴  3 is hypatenuse       (3)^2 =(x+1)^2 +x^2          2x^2 +2x−8=0          x^2 +x−4=0        x=((−1±(√(17)))/2)     x+1=((−1±(√(17)))/2)+1=((1±(√(17)))/2)  (((1+(√(17)))/2) ,3,((−1+(√(17)))/2)) contains irrational numbers  (((1−(√(17)))/2) ,3,((−1−(√(17)))/2)) contains negative  numbers.  Hence  (5,3,4) is required pythagorean triplet.
$$\mathrm{Case}-\mathrm{1}:\:\mathrm{x}+\mathrm{1}>\mathrm{3}\: \\ $$$$\therefore\:\mathrm{x}+\mathrm{1}\:\mathrm{is}\:\mathrm{hypatenuse} \\ $$$$\:\:\:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} =\left(\mathrm{3}\right)^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}=\mathrm{9}+\mathrm{x}^{\mathrm{2}} \\ $$$$\mathrm{2x}=\mathrm{9}−\mathrm{1}=\mathrm{8} \\ $$$$\mathrm{x}=\mathrm{4} \\ $$$$\mathrm{x}+\mathrm{1}=\mathrm{4}+\mathrm{1}=\mathrm{5} \\ $$$$\left(\mathrm{5},\mathrm{3},\mathrm{4}\right)\:\mathrm{is}\:\mathrm{required}\:\mathrm{pythagorean}\:\mathrm{triplet}. \\ $$$$\mathrm{Case}-\mathrm{2}:\mathrm{3}>\mathrm{x}+\mathrm{1} \\ $$$$\:\:\:\:\:\therefore\:\:\mathrm{3}\:\mathrm{is}\:\mathrm{hypatenuse} \\ $$$$\:\:\:\:\:\left(\mathrm{3}\right)^{\mathrm{2}} =\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\mathrm{2x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{8}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{x}−\mathrm{4}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\mathrm{x}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$$\:\:\:\mathrm{x}+\mathrm{1}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{17}}}{\mathrm{2}}+\mathrm{1}=\frac{\mathrm{1}\pm\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$$\left(\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}}\:,\mathrm{3},\frac{−\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}}\right)\:\mathrm{contains}\:\mathrm{irrational}\:\mathrm{numbers} \\ $$$$\left(\frac{\mathrm{1}−\sqrt{\mathrm{17}}}{\mathrm{2}}\:,\mathrm{3},\frac{−\mathrm{1}−\sqrt{\mathrm{17}}}{\mathrm{2}}\right)\:\mathrm{contains}\:\mathrm{negative} \\ $$$$\mathrm{numbers}. \\ $$$$\mathrm{Hence} \\ $$$$\left(\mathrm{5},\mathrm{3},\mathrm{4}\right)\:\mathrm{is}\:\mathrm{required}\:\mathrm{pythagorean}\:\mathrm{triplet}. \\ $$$$\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *