Menu Close

Given-that-x-tan-23-find-the-value-of-cos-16-in-terms-of-x-




Question Number 144614 by nadovic last updated on 27/Jun/21
 ^ Given that x = tan 23°, find the value   of  cos 16° in terms of x._
Giventhatx=tan23°,findthevalueofcos16°intermsofx.
Answered by qaz last updated on 27/Jun/21
x=tan 23°=((tan 30°−tan 7°)/(1+tan 30°∙tan 7°))  ⇒tan 7°=((tan 30°−x)/(1+xtan 30°))  tan 16°=((tan 23°−tan 7°)/(1+tan 23°∙tan 7°))=((x−tan 7°)/(1+xtan 7°))  ⇒cos 16°=(1/( (√(1+tan^2  16°))))        =(1/( (√(1+(((x−tan 7°)/(1+xtan 7°)))^2 ))))        =(1/( (√(1+(((x−((tan 30°−x)/(1+xtan 30°)))/(1+x∙((tan 30°−x)/(1+xtan 30°)))))^2 ))))  continue...
x=tan23°=tan30°tan7°1+tan30°tan7°tan7°=tan30°x1+xtan30°tan16°=tan23°tan7°1+tan23°tan7°=xtan7°1+xtan7°cos16°=11+tan216°=11+(xtan7°1+xtan7°)2=11+(xtan30°x1+xtan30°1+xtan30°x1+xtan30°)2continue
Commented by nadovic last updated on 27/Jun/21
Thank you Sir
ThankyouSir
Answered by imjagoll last updated on 27/Jun/21
cos 16°=cos (23°−7°)                 = cos 23° cos 7°+sin 23° sin 7°  tan 7°=(((1/( (√3)))−x)/(1+(1/( (√3)))x))=((1−x(√3))/( (√3)+x))    { ((sin 23°=(x/( (√(1+x^2 )))))),((cos 23°=(1/( (√(1+x^2 )))))) :}   { ((sin 7°=((1−x(√3))/(2(√(x^2 +1)))))),((cos 7°=((x+(√3))/( 2(√(x^2 +1)))))) :}  cos 16°=(1/( (√(1+x^2 )))).((x+(√3))/( 2(√(1+x^2 ))))+(x/( (√(1+x^2 )))).((1−x(√3))/( 2(√(1+x^2 ))))  = ((x+(√3)+x−x^2 (√3))/(2(1+x^2 )))=((2x+(√3)−x^2 (√3))/(2+2x^2 ))
cos16°=cos(23°7°)=cos23°cos7°+sin23°sin7°tan7°=13x1+13x=1x33+x{sin23°=x1+x2cos23°=11+x2{sin7°=1x32x2+1cos7°=x+32x2+1cos16°=11+x2.x+321+x2+x1+x2.1x321+x2=x+3+xx232(1+x2)=2x+3x232+2x2
Commented by liberty last updated on 27/Jun/21
for x = tan 23° ≈ .424  cos 16°=((2(.424)+(√3)−(√3)(.424)^2 )/(2(1+(.424)^2 )))               ≈ .9615
forx=tan23°.424cos16°=2(.424)+33(.424)22(1+(.424)2).9615
Commented by nadovic last updated on 27/Jun/21
Thank you Sir
ThankyouSir

Leave a Reply

Your email address will not be published. Required fields are marked *