Menu Close

Given-that-x-x-4-4-find-the-value-of-x-x-2-x-x-8-




Question Number 125739 by ZiYangLee last updated on 13/Dec/20
Given that x^x^4  =4,   find the value of x^x^2  +x^x^8  .
$$\mathrm{Given}\:\mathrm{that}\:{x}^{{x}^{\mathrm{4}} } =\mathrm{4},\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}^{{x}^{\mathrm{2}} } +{x}^{{x}^{\mathrm{8}} } . \\ $$
Commented by Dwaipayan Shikari last updated on 13/Dec/20
x^x^4  =4 ⇒x^x^x^x^4    =4 ⇒ x^4 =4⇒x=±(√2)  x^x^2  +x^x^8  =(±(√2))^2 +(±(√2))^(((√2))^8 ) =2+(±(√2))^(16) =258
$${x}^{{x}^{\mathrm{4}} } =\mathrm{4}\:\Rightarrow{x}^{{x}^{{x}^{{x}^{\mathrm{4}} } } } =\mathrm{4}\:\Rightarrow\:{x}^{\mathrm{4}} =\mathrm{4}\Rightarrow{x}=\pm\sqrt{\mathrm{2}} \\ $$$${x}^{{x}^{\mathrm{2}} } +{x}^{{x}^{\mathrm{8}} } =\left(\pm\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left(\pm\sqrt{\mathrm{2}}\right)^{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{8}} } =\mathrm{2}+\left(\pm\sqrt{\mathrm{2}}\right)^{\mathrm{16}} =\mathrm{258} \\ $$
Commented by ZiYangLee last updated on 13/Dec/20
★★
$$\bigstar\bigstar \\ $$
Commented by MJS_new last updated on 13/Dec/20
x^x^a  =x^((x^a ))   (√2)^(((√2)^2 )) =(√2)^2 =2  (√2)^(((√2)^8 )) =(√2)^(16) =256  2+256=258
$${x}^{{x}^{{a}} } ={x}^{\left({x}^{{a}} \right)} \\ $$$$\sqrt{\mathrm{2}}\:^{\left(\sqrt{\mathrm{2}}\:^{\mathrm{2}} \right)} =\sqrt{\mathrm{2}}\:^{\mathrm{2}} =\mathrm{2} \\ $$$$\sqrt{\mathrm{2}}\:^{\left(\sqrt{\mathrm{2}}\:^{\mathrm{8}} \right)} =\sqrt{\mathrm{2}}\:^{\mathrm{16}} =\mathrm{256} \\ $$$$\mathrm{2}+\mathrm{256}=\mathrm{258} \\ $$
Commented by Dwaipayan Shikari last updated on 13/Dec/20
There was a typo . I have edited
$${There}\:{was}\:{a}\:{typo}\:.\:{I}\:{have}\:{edited} \\ $$
Commented by MJS_new last updated on 13/Dec/20
I thought so
$$\mathrm{I}\:\mathrm{thought}\:\mathrm{so} \\ $$
Commented by ZiYangLee last updated on 13/Dec/20
yaa I had seen it haha...
$$\mathrm{yaa}\:\mathrm{I}\:\mathrm{had}\:\mathrm{seen}\:\mathrm{it}\:\mathrm{haha}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *