Question Number 125739 by ZiYangLee last updated on 13/Dec/20
$$\mathrm{Given}\:\mathrm{that}\:{x}^{{x}^{\mathrm{4}} } =\mathrm{4},\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}^{{x}^{\mathrm{2}} } +{x}^{{x}^{\mathrm{8}} } . \\ $$
Commented by Dwaipayan Shikari last updated on 13/Dec/20
$${x}^{{x}^{\mathrm{4}} } =\mathrm{4}\:\Rightarrow{x}^{{x}^{{x}^{{x}^{\mathrm{4}} } } } =\mathrm{4}\:\Rightarrow\:{x}^{\mathrm{4}} =\mathrm{4}\Rightarrow{x}=\pm\sqrt{\mathrm{2}} \\ $$$${x}^{{x}^{\mathrm{2}} } +{x}^{{x}^{\mathrm{8}} } =\left(\pm\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\left(\pm\sqrt{\mathrm{2}}\right)^{\left(\sqrt{\mathrm{2}}\right)^{\mathrm{8}} } =\mathrm{2}+\left(\pm\sqrt{\mathrm{2}}\right)^{\mathrm{16}} =\mathrm{258} \\ $$
Commented by ZiYangLee last updated on 13/Dec/20
$$\bigstar\bigstar \\ $$
Commented by MJS_new last updated on 13/Dec/20
$${x}^{{x}^{{a}} } ={x}^{\left({x}^{{a}} \right)} \\ $$$$\sqrt{\mathrm{2}}\:^{\left(\sqrt{\mathrm{2}}\:^{\mathrm{2}} \right)} =\sqrt{\mathrm{2}}\:^{\mathrm{2}} =\mathrm{2} \\ $$$$\sqrt{\mathrm{2}}\:^{\left(\sqrt{\mathrm{2}}\:^{\mathrm{8}} \right)} =\sqrt{\mathrm{2}}\:^{\mathrm{16}} =\mathrm{256} \\ $$$$\mathrm{2}+\mathrm{256}=\mathrm{258} \\ $$
Commented by Dwaipayan Shikari last updated on 13/Dec/20
$${There}\:{was}\:{a}\:{typo}\:.\:{I}\:{have}\:{edited} \\ $$
Commented by MJS_new last updated on 13/Dec/20
$$\mathrm{I}\:\mathrm{thought}\:\mathrm{so} \\ $$
Commented by ZiYangLee last updated on 13/Dec/20
$$\mathrm{yaa}\:\mathrm{I}\:\mathrm{had}\:\mathrm{seen}\:\mathrm{it}\:\mathrm{haha}… \\ $$