Menu Close

Given-that-x-y-R-x-2-y-2-32-x-y-4-x-y-4-4352-Find-the-value-of-x-2-y-2-




Question Number 115555 by ZiYangLee last updated on 26/Sep/20
Given that x,y∈R ∀ x^2 −y^2 =32,  (x+y)^4 +(x−y)^4 =4352,   Find the value of x^2 +y^2 .
Giventhatx,yRx2y2=32,(x+y)4+(xy)4=4352,Findthevalueofx2+y2.
Commented by Rasheed.Sindhi last updated on 27/Sep/20
                 AnOther Way  (By changing into                            reciprocal form)  (x+y)^4 +(x−y)^4 =4352  (((x+y)^4 )/((x+y)^2 (x−y)^2 ))+(((x−y)^4 )/((x+y)^2 (x−y)^2 ))                                   =((4352)/((x+y)^2 (x−y)^2 ))  (((x+y)^2 )/((x−y)^2 ))+(((x−y)^2 )/((x+y)^2 ))=((4352)/((x^2 −y^2 )^2 ))  (((x+y)^2 )/((x−y)^2 ))+(((x−y)^2 )/((x+y)^2 ))=((4352)/((32)^2 ))=((17)/4)  (((x+y)^2 )/((x−y)^2 ))=z   z+(1/z)=((17)/4)  4z^2 −17z+4=0  (z−4)(4z−1)=0  z=4 ∨ z=(1/4)  (((x+y)^2 )/((x−y)^2 ))=4,(1/4)  (((x+y)^2 )/((32/(x+y))^2 ))=4,(1/4)  (x+y)^4 =4(32)^2   (x+y)^2 =±64  (x−y)^2 =(32/(x+y))^2 =32^2 /(±64)=±16  2(x^2 +y^2 )=(x+y)^2 +(x−y)^2   x^2 +y^2 =(1/2)(±64±16)=±40
AnOtherWay(Bychangingintoreciprocalform)(x+y)4+(xy)4=4352(x+y)4(x+y)2(xy)2+(xy)4(x+y)2(xy)2=4352(x+y)2(xy)2(x+y)2(xy)2+(xy)2(x+y)2=4352(x2y2)2(x+y)2(xy)2+(xy)2(x+y)2=4352(32)2=174(x+y)2(xy)2=zz+1z=1744z217z+4=0(z4)(4z1)=0z=4z=14(x+y)2(xy)2=4,14(x+y)2(32/(x+y))2=4,14(x+y)4=4(32)2(x+y)2=±64(xy)2=(32/(x+y))2=322/(±64)=±162(x2+y2)=(x+y)2+(xy)2x2+y2=12(±64±16)=±40
Answered by mr W last updated on 26/Sep/20
u=x+y  v=x−y  x^2 −y^2 =(x+y)(x−y)=32  ⇒uv=32  u^4 +v^4 =4352  u^4 +v^4 +2u^2 v^2 =4352+2(uv)^2   (u^2 +v^2 )^2 =4352+2×32^2 =6400=80^2   ⇒u^2 +v^2 =80  u^2 +v^2 +2uv=80+2(uv)  (u+v)^2 =80+2×32=144=12^2   ⇒u+v=±12  u^2 +v^2 −2uv=80−2(uv)  (u−v)^2 =80−2×32=16=4^2   ⇒u−v=±4  x=((u+v)/2)=±6  y=((u−v)/2)=±2  ⇒x^2 +y^2 =36+4=40
u=x+yv=xyx2y2=(x+y)(xy)=32uv=32u4+v4=4352u4+v4+2u2v2=4352+2(uv)2(u2+v2)2=4352+2×322=6400=802u2+v2=80u2+v2+2uv=80+2(uv)(u+v)2=80+2×32=144=122u+v=±12u2+v22uv=802(uv)(uv)2=802×32=16=42uv=±4x=u+v2=±6y=uv2=±2x2+y2=36+4=40
Commented by ZiYangLee last updated on 26/Sep/20
Thanks very much..
Thanksverymuch..
Answered by ruwedkabeh last updated on 26/Sep/20
(x+y)^4 +(x−y)^4 =4352,   x^4 +4x^3 y+6x^2 y^2 +4xy^3 +y^4 +x^4 −4x^3 y+6x^2 y^2 −4xy^3 +y^4 =4352  2x^4 +12x^2 y^2 +2y^4 =4352  x^4 +6x^2 y^2 +y^4 =2176  (x^2 −y^2 )^2 +8x^2 y^2 =2176  (32)^2 +8x^2 y^2 =2176  1024+8x^2 y^2 =2176  8x^2 y^2 =1152  x^2 y^2 =144    (x^2 +y^2 )^2 =(x^2 −y^2 )^2 +4x^2 y^2 =1024+576=1600  x^2 +y^2 =40
(x+y)4+(xy)4=4352,x4+4x3y+6x2y2+4xy3+y4+x44x3y+6x2y24xy3+y4=43522x4+12x2y2+2y4=4352x4+6x2y2+y4=2176(x2y2)2+8x2y2=2176(32)2+8x2y2=21761024+8x2y2=21768x2y2=1152x2y2=144(x2+y2)2=(x2y2)2+4x2y2=1024+576=1600x2+y2=40
Commented by ZiYangLee last updated on 26/Sep/20
Thank you!
Thankyou!
Answered by Olaf last updated on 26/Sep/20
(x+y)^4 +(x−y)^4  =  [(x+y)^2 +(x−y)^2 ]^2 −2(x+y)^2 (x−y)^2  =  (2x^2 +2y^2 )^2 −2(x^2 −y^2 )^2  =  4(x^2 +y^2 )^2 −2×32^2  = 4352  (x^2 +y^2 )^2  = ((4352+2048)/4) = ((6400)/4) = 1600  x^2 +y^2  = 40
(x+y)4+(xy)4=[(x+y)2+(xy)2]22(x+y)2(xy)2=(2x2+2y2)22(x2y2)2=4(x2+y2)22×322=4352(x2+y2)2=4352+20484=64004=1600x2+y2=40

Leave a Reply

Your email address will not be published. Required fields are marked *