Menu Close

Given-that-y-1-x-a-Show-that-y-n-1-n-n-x-n-1-b-Find-an-expression-for-y-n-1-y-n-




Question Number 165641 by nadovic last updated on 05/Feb/22
            Given that  y = (1/x)   (a) Show that  y^((n))  = (((−1)^n  n!)/x^(n+1) )  (b) Find an expression for y^((n−1)) + y^((n))
Giventhaty=1x(a)Showthaty(n)=(1)nn!xn+1(b)Findanexpressionfory(n1)+y(n)
Answered by aleks041103 last updated on 05/Feb/22
a)  y^((0)) =(((−1)^0 0!)/x^(0+1) )=(1/x)=y✓  suppose  y^((k)) =(((−1)^k k!)/x^(k+1) )  then  y^((k+1)) =y^((k)) ′=((((−1)^k k!)/x^(k+1) ))′=  =(−1)^k k!(x^(−k−1) )′=  =(−1)^k k!(−k−1)x^(−k−2) =  =(−1)^(k+1) k!(k+1) (1/x^(k+2) )=  =(((−1)^(k+1) (k+1)!)/x^((k+1)+1) )✓  ⇒by induction:  ∀n∈N^0 , y^((n)) =(d^n /dx^n )((1/x))=(((−1)^n n!)/x^(n+1) )
a)y(0)=(1)00!x0+1=1x=ysupposey(k)=(1)kk!xk+1thenPrime causes double exponent: use braces to clarify=(1)kk!(xk1)==(1)kk!(k1)xk2==(1)k+1k!(k+1)1xk+2==(1)k+1(k+1)!x(k+1)+1byinduction:nN0,y(n)=dndxn(1x)=(1)nn!xn+1
Answered by aleks041103 last updated on 05/Feb/22
b)  y^((n−1)) =(((−1)^(n−1) (n−1)!)/x^n )  y^((n)) =(((−1)^n n!)/x^(n+1) )  ⇒y^((n−1)) +y^((n)) =(((−1)^n n!)/x^(n+1) )(1+(((−1)x)/n))  y^((n−1)) +y^((n)) =(((−1)^n (n−1)!)/x^(n+1) )(n−x)
b)y(n1)=(1)n1(n1)!xny(n)=(1)nn!xn+1y(n1)+y(n)=(1)nn!xn+1(1+(1)xn)y(n1)+y(n)=(1)n(n1)!xn+1(nx)

Leave a Reply

Your email address will not be published. Required fields are marked *