Menu Close

Given-that-y-3-sin-x-4-cos-x-6-2-0-x-2pi-Find-the-smallest-value-of-y-




Question Number 160605 by ZiYangLee last updated on 03/Dec/21
Given that y=(3 sin x−4 cos x+6)^2 , 0≤x≤2π.  Find the smallest value of y.
Giventhaty=(3sinx4cosx+6)2,0x2π.Findthesmallestvalueofy.
Commented by cortano last updated on 03/Dec/21
y=[5((3/5)sin x−(4/5)cos x)+6]^2   y=[5sin (α−x)+6]^2 ; α=cos^(−1) ((3/5))  y_(max) = 121  y_(min) =1
y=[5(35sinx45cosx)+6]2y=[5sin(αx)+6]2;α=cos1(35)ymax=121ymin=1

Leave a Reply

Your email address will not be published. Required fields are marked *