Menu Close

given-that-y-3x-4-find-the-percentage-increase-in-y-when-x-increases-at-5-2-




Question Number 33136 by Rio Mike last updated on 11/Apr/18
given that y= 3x^4  find the percentage  increase in y when x increases at (5/2)%.
$${given}\:{that}\:{y}=\:\mathrm{3}{x}^{\mathrm{4}} \:{find}\:{the}\:{percentage} \\ $$$${increase}\:{in}\:{y}\:{when}\:{x}\:{increases}\:{at}\:\frac{\mathrm{5}}{\mathrm{2}}\%. \\ $$$$ \\ $$
Answered by MJS last updated on 11/Apr/18
x+(5/2)%=x×(1+((5/2)/(100)))=((41)/(40))x  (((41)/(40))x)^4 =((2825761)/(2560000))x^4 =  =y×(1+((2825761/25600)/(100)))=  =y+((265761)/(25600))%≈y+10.38%
$${x}+\frac{\mathrm{5}}{\mathrm{2}}\%={x}×\left(\mathrm{1}+\frac{\mathrm{5}/\mathrm{2}}{\mathrm{100}}\right)=\frac{\mathrm{41}}{\mathrm{40}}{x} \\ $$$$\left(\frac{\mathrm{41}}{\mathrm{40}}{x}\right)^{\mathrm{4}} =\frac{\mathrm{2825761}}{\mathrm{2560000}}{x}^{\mathrm{4}} = \\ $$$$={y}×\left(\mathrm{1}+\frac{\mathrm{2825761}/\mathrm{25600}}{\mathrm{100}}\right)= \\ $$$$={y}+\frac{\mathrm{265761}}{\mathrm{25600}}\%\approx{y}+\mathrm{10}.\mathrm{38\%} \\ $$
Commented by Rio Mike last updated on 11/Apr/18
sir do we get y+231% at such state  my result seems to be different 10.38%
$${sir}\:{do}\:{we}\:{get}\:{y}+\mathrm{231\%}\:{at}\:{such}\:{state} \\ $$$${my}\:{result}\:{seems}\:{to}\:{be}\:{different}\:\mathrm{10}.\mathrm{38\%} \\ $$
Commented by MJS last updated on 11/Apr/18
you′re right, I forgot the factor 3...  I corrected it
$$\mathrm{you}'\mathrm{re}\:\mathrm{right},\:\mathrm{I}\:\mathrm{forgot}\:\mathrm{the}\:\mathrm{factor}\:\mathrm{3}… \\ $$$$\mathrm{I}\:\mathrm{corrected}\:\mathrm{it} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *