Menu Close

Given-that-y-cosx-sinx-find-dy-dx-and-lim-x-0-y-




Question Number 64872 by Rio Michael last updated on 22/Jul/19
Given that    y = (cosx^ )^(sinx)   find (dy/dx)  and     lim_(x→0)  y
Giventhaty=(cosx)sinxfinddydxandlimx0y
Commented by kaivan.ahmadi last updated on 22/Jul/19
lny=sinxln(cosx)⇒((y′)/y)=cosxln(cosx)−((sinx)/(cosx))sinx⇒  (dy/dx)=(cosx)^(sinx) (cosxln(cosx)−((sin^2 x)/(cosx)))    lim_(x→0) cosx^(sinx) =1^0 =1
lny=sinxln(cosx)yy=cosxln(cosx)sinxcosxsinxdydx=(cosx)sinx(cosxln(cosx)sin2xcosx)limx0cosxsinx=10=1
Commented by mathmax by abdo last updated on 22/Jul/19
we have y =e^(sinxln(cosx))  ⇒(dy/dx) =(d/dx)( sinx ln(cosx))e^(sinxln(cosx))   ={cosxln(cosx) +sinx ((−sinx)/(cosx))}y(x) ⇒  y^′ (x)=((cos^2 x ln(cosx)−sin^2 x)/(cosx))× (cosx)^(sinx)
wehavey=esinxln(cosx)dydx=ddx(sinxln(cosx))esinxln(cosx)={cosxln(cosx)+sinxsinxcosx}y(x)y(x)=cos2xln(cosx)sin2xcosx×(cosx)sinx
Commented by mathmax by abdo last updated on 22/Jul/19
we have y(x) =e^(sinxln(cosx))     and lim_(x→0) sinxln(cosx) =0 ⇒  lim_(x→0)  y(x) =1
wehavey(x)=esinxln(cosx)andlimx0sinxln(cosx)=0limx0y(x)=1
Commented by Masumsiddiqui399@gmail.com last updated on 23/Jul/19
K

Leave a Reply

Your email address will not be published. Required fields are marked *