Menu Close

Given-that-y-mx-c-is-equation-of-tangent-to-the-ellipse-x-2-a-2-y-2-b-2-1-find-coordinate-of-point-of-contact-




Question Number 51489 by peter frank last updated on 27/Dec/18
Given that y=mx+c  is equation of  tangent  to the ellipse (x^2 /a^(2 ) )+(y^2 /b^2 )=1  find coordinate of   point of contact.
Giventhaty=mx+cisequationoftangenttotheellipsex2a2+y2b2=1findcoordinateofpointofcontact.
Answered by ajfour last updated on 27/Dec/18
P (acos θ,bsin θ)  ((xcos θ)/a)+((ysin θ)/b)−1 = 0   (tangent)  bxcos θ+aysin θ−ab = 0  or     mx−y+c = 0  ⇒  ((bcos θ)/m) = ((asin θ)/(−1)) = ((−ab)/c)     tan θ = −(b/(am))      (b^2 /c^2 )+((a^2 m^2 )/c^2 ) = sin^2 θ+cos^2 θ = 1  ⇒ (√(a^2 m^2 +b^2 )) = ∣c∣    acos θ = a(((−am)/( (√(a^2 m^2 +b^2 )))))    bsin θ = b((b/( (√(a^2 m^2 +b^2 )))))      P (−((a^2 m)/c), (b^2 /c)) .
P(acosθ,bsinθ)xcosθa+ysinθb1=0(tangent)bxcosθ+aysinθab=0ormxy+c=0bcosθm=asinθ1=abctanθ=bamb2c2+a2m2c2=sin2θ+cos2θ=1a2m2+b2=cacosθ=a(ama2m2+b2)bsinθ=b(ba2m2+b2)P(a2mc,b2c).

Leave a Reply

Your email address will not be published. Required fields are marked *