Given-that-y-mx-c-is-equation-of-tangent-to-the-ellipse-x-2-a-2-y-2-b-2-1-find-coordinate-of-point-of-contact- Tinku Tara June 4, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 51489 by peter frank last updated on 27/Dec/18 Giventhaty=mx+cisequationoftangenttotheellipsex2a2+y2b2=1findcoordinateofpointofcontact. Answered by ajfour last updated on 27/Dec/18 P(acosθ,bsinθ)xcosθa+ysinθb−1=0(tangent)bxcosθ+aysinθ−ab=0ormx−y+c=0⇒bcosθm=asinθ−1=−abctanθ=−bamb2c2+a2m2c2=sin2θ+cos2θ=1⇒a2m2+b2=∣c∣acosθ=a(−ama2m2+b2)bsinθ=b(ba2m2+b2)P(−a2mc,b2c). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-51485Next Next post: lim-x-0-1-x-2-cot-2-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.