Menu Close

Given-that-y-mx-c-is-equation-of-tangent-to-the-ellipse-x-2-a-2-y-2-b-2-1-find-coordinate-of-point-of-contact-




Question Number 51489 by peter frank last updated on 27/Dec/18
Given that y=mx+c  is equation of  tangent  to the ellipse (x^2 /a^(2 ) )+(y^2 /b^2 )=1  find coordinate of   point of contact.
$${Given}\:{that}\:{y}={mx}+{c} \\ $$$${is}\:{equation}\:{of}\:\:{tangent} \\ $$$${to}\:{the}\:{ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}\:} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${find}\:{coordinate}\:{of}\: \\ $$$${point}\:{of}\:{contact}. \\ $$
Answered by ajfour last updated on 27/Dec/18
P (acos θ,bsin θ)  ((xcos θ)/a)+((ysin θ)/b)−1 = 0   (tangent)  bxcos θ+aysin θ−ab = 0  or     mx−y+c = 0  ⇒  ((bcos θ)/m) = ((asin θ)/(−1)) = ((−ab)/c)     tan θ = −(b/(am))      (b^2 /c^2 )+((a^2 m^2 )/c^2 ) = sin^2 θ+cos^2 θ = 1  ⇒ (√(a^2 m^2 +b^2 )) = ∣c∣    acos θ = a(((−am)/( (√(a^2 m^2 +b^2 )))))    bsin θ = b((b/( (√(a^2 m^2 +b^2 )))))      P (−((a^2 m)/c), (b^2 /c)) .
$${P}\:\left({a}\mathrm{cos}\:\theta,{b}\mathrm{sin}\:\theta\right) \\ $$$$\frac{{x}\mathrm{cos}\:\theta}{{a}}+\frac{{y}\mathrm{sin}\:\theta}{{b}}−\mathrm{1}\:=\:\mathrm{0}\:\:\:\left({tangent}\right) \\ $$$${bx}\mathrm{cos}\:\theta+{ay}\mathrm{sin}\:\theta−{ab}\:=\:\mathrm{0} \\ $$$${or}\:\:\:\:\:{mx}−{y}+{c}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:\frac{{b}\mathrm{cos}\:\theta}{{m}}\:=\:\frac{{a}\mathrm{sin}\:\theta}{−\mathrm{1}}\:=\:\frac{−{ab}}{{c}} \\ $$$$\:\:\:\mathrm{tan}\:\theta\:=\:−\frac{{b}}{{am}}\:\: \\ $$$$\:\:\frac{{b}^{\mathrm{2}} }{{c}^{\mathrm{2}} }+\frac{{a}^{\mathrm{2}} {m}^{\mathrm{2}} }{{c}^{\mathrm{2}} }\:=\:\mathrm{sin}\:^{\mathrm{2}} \theta+\mathrm{cos}\:^{\mathrm{2}} \theta\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:=\:\mid{c}\mid \\ $$$$\:\:{a}\mathrm{cos}\:\theta\:=\:{a}\left(\frac{−{am}}{\:\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right) \\ $$$$\:\:{b}\mathrm{sin}\:\theta\:=\:{b}\left(\frac{{b}}{\:\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} }}\right) \\ $$$$\:\:\:\:{P}\:\left(−\frac{{a}^{\mathrm{2}} {m}}{{c}},\:\frac{{b}^{\mathrm{2}} }{{c}}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *