Menu Close

Given-that-y-x-2-cosx-find-dy-dx-simplifying-your-answer-as-far-as-posible-




Question Number 37662 by Rio Mike last updated on 16/Jun/18
 Given that y=x^2 cosx,  find (dy/(dx )), simplifying your answer  as far as posible
$$\:\mathrm{Given}\:\mathrm{that}\:{y}={x}^{\mathrm{2}} {cosx}, \\ $$$$\mathrm{find}\:\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}\:},\:\mathrm{simplifying}\:\mathrm{your}\:\mathrm{answer} \\ $$$$\mathrm{as}\:\mathrm{far}\:\mathrm{as}\:\mathrm{posible} \\ $$
Answered by Joel579 last updated on 16/Jun/18
u = x^2   v = cos x    (dy/dx) = uv′ + vu′ = x^2  . −sin x + cos x . 2x         = −x^2  sin x + 2x cos x         = x(2cos x − x sin x)
$${u}\:=\:{x}^{\mathrm{2}} \\ $$$${v}\:=\:\mathrm{cos}\:{x} \\ $$$$ \\ $$$$\frac{{dy}}{{dx}}\:=\:{uv}'\:+\:{vu}'\:=\:{x}^{\mathrm{2}} \:.\:−\mathrm{sin}\:{x}\:+\:\mathrm{cos}\:{x}\:.\:\mathrm{2}{x} \\ $$$$\:\:\:\:\:\:\:=\:−{x}^{\mathrm{2}} \:\mathrm{sin}\:{x}\:+\:\mathrm{2}{x}\:\mathrm{cos}\:{x} \\ $$$$\:\:\:\:\:\:\:=\:{x}\left(\mathrm{2cos}\:{x}\:−\:{x}\:\mathrm{sin}\:{x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *