Menu Close

Given-that-z-6-2-z-6-9i-a-Use-algebra-to-show-that-the-locus-of-z-is-a-circle-stating-its-center-and-its-radius-b-sketch-the-locus-z-on-an-argand-diagram-




Question Number 63517 by Rio Michael last updated on 05/Jul/19
Given that  ∣z−6∣=2∣z+6−9i∣,  a) Use algebra to show that the locus of z is a circle,  stating its center and its radius.  b) sketch the locus z on an argand diagram.
Giventhatz6∣=2z+69i,a)Usealgebratoshowthatthelocusofzisacircle,statingitscenteranditsradius.b)sketchthelocuszonanarganddiagram.
Answered by MJS last updated on 05/Jul/19
∣a−6+bi∣=2∣a+6+(b−9)i∣  (√(a^2 −12a+b^2 +36))=2(√(a^2 +12a+b^2 −18b+117))  a^2 −12a+b^2 +36=4(a^2 +12a+b^2 −18b+117)  a^2 +20a+b^2 −24b+144=0  (a−p)^2 +(b−q)^2 −r^2 =0  a^2 −2pa+p^2 +b^2 −2qb+q^2 −r^2 =0  −2p=20 ⇒ p=−10  −2q=−24 ⇒ q=12  a^2 +20a+100+b^2 −24b+144−r^2 =0  a^2 +20a+b^2 −24b+144=r^2 −100 ⇒ r^2 −100=0 ⇒r=10  (a+10)^2 +(b−12)^2 −10^2 =0  ⇒ center= (((−10)),((12)) )  radius=10
a6+bi∣=2a+6+(b9)ia212a+b2+36=2a2+12a+b218b+117a212a+b2+36=4(a2+12a+b218b+117)a2+20a+b224b+144=0(ap)2+(bq)2r2=0a22pa+p2+b22qb+q2r2=02p=20p=102q=24q=12a2+20a+100+b224b+144r2=0a2+20a+b224b+144=r2100r2100=0r=10(a+10)2+(b12)2102=0center=(1012)radius=10
Commented by Rio Michael last updated on 05/Jul/19
correct!
correct!

Leave a Reply

Your email address will not be published. Required fields are marked *