Menu Close

Given-the-curve-y-x-4-3x-3-6x-2-3x-determine-for-which-value-of-the-tangent-to-the-curve-from-point-P-0-is-maximum-




Question Number 159874 by tounghoungko last updated on 22/Nov/21
    Given the curve y=x^4 +3x^3 −6x^2 −3x   determine for which value    of α the tangent to the curve   from point P(α,0) is maximum.
$$\:\:\:\:{Given}\:{the}\:{curve}\:{y}={x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{2}} −\mathrm{3}{x} \\ $$$$\:{determine}\:{for}\:{which}\:{value}\: \\ $$$$\:{of}\:\alpha\:{the}\:{tangent}\:{to}\:{the}\:{curve} \\ $$$$\:{from}\:{point}\:{P}\left(\alpha,\mathrm{0}\right)\:{is}\:{maximum}. \\ $$
Commented by mr W last updated on 22/Nov/21
what do you mean with “the tangent  to the curve is maximum”?
$${what}\:{do}\:{you}\:{mean}\:{with}\:“{the}\:{tangent} \\ $$$${to}\:{the}\:{curve}\:{is}\:{maximum}''? \\ $$
Commented by tounghoungko last updated on 22/Nov/21
the tangent with slope maximum
$${the}\:{tangent}\:{with}\:{slope}\:{maximum} \\ $$
Commented by mr W last updated on 22/Nov/21
no solution!   since when x→+∞, y′→+∞
$${no}\:{solution}!\: \\ $$$${since}\:{when}\:{x}\rightarrow+\infty,\:{y}'\rightarrow+\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *