Menu Close

Given-the-equation-of-two-circles-C-1-x-2-y-2-6x-4y-9-0-andC-2-x-2-y-2-2x-6y-9-0-find-the-equation-of-the-common-tangent-to-both-circles-




Question Number 110181 by Rio Michael last updated on 27/Aug/20
Given the equation of two circles  C_1 : x^2  + y^2  βˆ’6xβˆ’4y + 9 = 0 andC_2  : x^2  +y^2 βˆ’2xβˆ’6y + 9 =0  find the equation of the common tangent to both circles.
GiventheequationoftwocirclesC1:x2+y2βˆ’6xβˆ’4y+9=0andC2:x2+y2βˆ’2xβˆ’6y+9=0findtheequationofthecommontangenttobothcircles.
Commented by bemath last updated on 27/Aug/20
Commented by bemath last updated on 27/Aug/20
centre point C_1 (3,2), radius =r_1 = 2  centre point C_2 (1,3), radius=r_2 =1  say the common tangent line to both circle y=mx+n  or mxβˆ’y+n=0  (1) 2= ∣((3mβˆ’2+n)/( (√(13))))βˆ£β‡’2(√(13)) =∣3m+nβˆ’2∣  3m+n = 2Β±2(√(13)) ...(1)  (2) 1=∣((mβˆ’3+n)/( (√(10))))∣ β‡’(√(10)) =∣m+nβˆ’3∣  m+n = 3Β±(√(10)) ...(2)  (1)βˆ’(2)β†’2m = βˆ’1Β±2(√(13))βˆ“(√(10))    m = βˆ’(1/2)Β±(√(13))βˆ“((√(10))/2)    n= (7/2)Β±(√(10))βˆ“(√(13))Β±((√(10))/2)
centrepointC1(3,2),radius=r1=2centrepointC2(1,3),radius=r2=1saythecommontangentlinetobothcircley=mx+normxβˆ’y+n=0(1)2=∣3mβˆ’2+n13βˆ£β‡’213=∣3m+nβˆ’2∣3m+n=2Β±213…(1)(2)1=∣mβˆ’3+n10βˆ£β‡’10=∣m+nβˆ’3∣m+n=3Β±10…(2)(1)βˆ’(2)β†’2m=βˆ’1Β±213βˆ“10m=βˆ’12Β±13βˆ“102n=72Β±10βˆ“13Β±102

Leave a Reply

Your email address will not be published. Required fields are marked *