Menu Close

Given-the-equation-of-two-circles-C-1-x-2-y-2-6x-4y-9-0-andC-2-x-2-y-2-2x-6y-9-0-find-the-equation-of-the-common-tangent-to-both-circles-




Question Number 110181 by Rio Michael last updated on 27/Aug/20
Given the equation of two circles  C_1 : x^2  + y^2  −6x−4y + 9 = 0 andC_2  : x^2  +y^2 −2x−6y + 9 =0  find the equation of the common tangent to both circles.
GiventheequationoftwocirclesC1:x2+y26x4y+9=0andC2:x2+y22x6y+9=0findtheequationofthecommontangenttobothcircles.
Commented by bemath last updated on 27/Aug/20
Commented by bemath last updated on 27/Aug/20
centre point C_1 (3,2), radius =r_1 = 2  centre point C_2 (1,3), radius=r_2 =1  say the common tangent line to both circle y=mx+n  or mx−y+n=0  (1) 2= ∣((3m−2+n)/( (√(13))))∣⇒2(√(13)) =∣3m+n−2∣  3m+n = 2±2(√(13)) ...(1)  (2) 1=∣((m−3+n)/( (√(10))))∣ ⇒(√(10)) =∣m+n−3∣  m+n = 3±(√(10)) ...(2)  (1)−(2)→2m = −1±2(√(13))∓(√(10))    m = −(1/2)±(√(13))∓((√(10))/2)    n= (7/2)±(√(10))∓(√(13))±((√(10))/2)
centrepointC1(3,2),radius=r1=2centrepointC2(1,3),radius=r2=1saythecommontangentlinetobothcircley=mx+normxy+n=0(1)2=3m2+n13∣⇒213=∣3m+n23m+n=2±213(1)(2)1=∣m3+n1010=∣m+n3m+n=3±10(2)(1)(2)2m=1±21310m=12±13102n=72±1013±102

Leave a Reply

Your email address will not be published. Required fields are marked *