Given-the-function-defined-by-x-0-t-x-1-e-t-dt-1-What-is-the-domain-of-definition-of-2-Show-that-x-D-x-x-x-1-and-deduce-the-value-of-n-n-N-3-Assuming-0- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 108283 by Ar Brandon last updated on 16/Aug/20 GiventhefunctionΓdefinedbyΓ(x)=∫0+∞tx−1e−tdt1.WhatisthedomainofdefinitionofΓ?2.Showthat∀x∈DΓ,xΓ(x)=Γ(x+1)anddeducethevalueofΓ(n),n∈N∗3.Assuming∫0+∞e−u2=π2,calculateΓ(12)anddeducethatΓ(n+12)=(2n)!π22nn! Answered by mathmax by abdo last updated on 16/Aug/20 1)Γ(x)=∫0∞tx−1e−tdt=∫01tx−1e−tdt+∫1+∞tx−1e−tdtatv(0)tx−1e−t∼tx−1and∫01tx−1dt=∫01dtt1−xconv⇔1−x<1⇒x>0at+∞wehavelimt→+∞t2tx−1e−t=limt→0tx+1e−t=0⇒∫1∞tx−1e−tdtconvergeforx>0⇒DΓ=]0,+∞[2)Γ(x+1)=∫0∞txe−tdt=bypsrts[−txe−t]t=0∞+∫0∞xtx−1e−tdt=x∫0∞tx−1e−tdt=xΓ(x)⇒fornnaturalΓ(n+1)=nΓ(n−1)=n(n−1)Γ(n−1)=…=n!Γ(1)=n!generalyΓ(x+n)=(x+n−1)(x+n−2)….(x+1)xΓ(x)3)Γ(12)=∫0∞t−12e−tdt=∫0∞e−ttdt=t=u∫0∞e−u2u(2u)du=2∫0∞e−u2du=2.π2=π⇒Γ(12)=π4)Γ(12+n)=(12+n−1)(12+n−2)…..(12+1)12Γ(12)=2n−12.2n−32…….32.12π=1.3.5…..(2n−3)(2n−1)2nπ=1.2.3.4.5…..(2n−1)(2n)2n(2.4.6……(2n))π=(2n)!22nn!π Commented by Ar Brandon last updated on 16/Aug/20 Thanks Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-n-1-3-n-lt-n-Next Next post: What-is-the-nature-of-the-integral-1-t-5-3t-1-t-3-100-e-t-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.