Menu Close

Given-the-function-f-cos2-sin-for-0-pi-plot-the-graph-for-intervals-of-pi-6-hence-find-the-value-of-cos2-sin-




Question Number 47586 by Rio Michael last updated on 11/Nov/18
Given the function f(θ)= cos2θ − sinθ. (for 0°≤θ≤π)  plot the graph for  intervals of (π/6).  hence find the value of cos2θ=sinθ.
$${Given}\:{the}\:{function}\:{f}\left(\theta\right)=\:{cos}\mathrm{2}\theta\:−\:{sin}\theta.\:\left({for}\:\mathrm{0}°\leqslant\theta\leqslant\pi\right) \\ $$$${plot}\:{the}\:{graph}\:{for}\:\:{intervals}\:{of}\:\frac{\pi}{\mathrm{6}}. \\ $$$${hence}\:{find}\:{the}\:{value}\:{of}\:{cos}\mathrm{2}\theta={sin}\theta. \\ $$
Answered by Joel578 last updated on 12/Nov/18
Commented by Joel578 last updated on 12/Nov/18
cos 2θ = sin θ  1 − 2sin^2  θ = sin θ  2sin^2  θ + sin θ − 1 = 0  (2sin θ − 1)(sin θ + 1) = 0  sin θ = (1/2)   ∨  sin θ = −1
$$\mathrm{cos}\:\mathrm{2}\theta\:=\:\mathrm{sin}\:\theta \\ $$$$\mathrm{1}\:−\:\mathrm{2sin}^{\mathrm{2}} \:\theta\:=\:\mathrm{sin}\:\theta \\ $$$$\mathrm{2sin}^{\mathrm{2}} \:\theta\:+\:\mathrm{sin}\:\theta\:−\:\mathrm{1}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{2sin}\:\theta\:−\:\mathrm{1}\right)\left(\mathrm{sin}\:\theta\:+\:\mathrm{1}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{sin}\:\theta\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\vee\:\:\mathrm{sin}\:\theta\:=\:−\mathrm{1} \\ $$
Commented by Rio Michael last updated on 13/Nov/18
thanks sir.But i thought   cos2θ = sinθ   could be located from the graph. That is at point where  cos2θ−sinθ(f(θ))=0
$${thanks}\:{sir}.{But}\:{i}\:{thought}\: \\ $$$${cos}\mathrm{2}\theta\:=\:{sin}\theta\: \\ $$$${could}\:{be}\:{located}\:{from}\:{the}\:{graph}.\:{That}\:{is}\:{at}\:{point}\:{where} \\ $$$${cos}\mathrm{2}\theta−{sin}\theta\left({f}\left(\theta\right)\right)=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *