Menu Close

Given-the-function-f-defined-by-f-x-x-2-1-x-i-state-the-domain-of-f-ii-show-that-f-x-2-x-1-x-x-lt-0-2-x-1-x-0-x-lt-2-x-2-1-x-x-2-




Question Number 94078 by Rio Michael last updated on 16/May/20
Given the function f defined by f(x) = ((∣x−2∣)/(1−∣x∣))  (i) state the domain of f.  (ii) show that        f(x) =  { ((((2−x)/(1+x)) , x < 0)),((((2−x)/(1−x)), 0 ≤ x < 2)),((((x−2)/(1−x)) , x ≥ 2)) :}  (iii) Investigate the continuity of f at x = 2.
$$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:{f}\:\mathrm{defined}\:\mathrm{by}\:{f}\left({x}\right)\:=\:\frac{\mid{x}−\mathrm{2}\mid}{\mathrm{1}−\mid{x}\mid} \\ $$$$\left(\mathrm{i}\right)\:\mathrm{state}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:{f}. \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\:\:\:\:{f}\left({x}\right)\:=\:\begin{cases}{\frac{\mathrm{2}−{x}}{\mathrm{1}+{x}}\:,\:{x}\:<\:\mathrm{0}}\\{\frac{\mathrm{2}−{x}}{\mathrm{1}−{x}},\:\mathrm{0}\:\leqslant\:{x}\:<\:\mathrm{2}}\\{\frac{{x}−\mathrm{2}}{\mathrm{1}−{x}}\:,\:{x}\:\geqslant\:\mathrm{2}}\end{cases} \\ $$$$\left(\mathrm{iii}\right)\:\mathrm{Investigate}\:\mathrm{the}\:\mathrm{continuity}\:\mathrm{of}\:{f}\:\mathrm{at}\:{x}\:=\:\mathrm{2}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *