Menu Close

Given-the-function-f-x-ln-x-x-1-a-State-the-domain-D-f-of-f-b-Find-lim-x-ln-x-x-1-State-its-asymptotes-c-Draw-up-a-variation-table-for-the-curve-y-f-x-




Question Number 98539 by Rio Michael last updated on 14/Jun/20
Given the function  f(x) = ((ln x)/(x−1))  (a) State the domain D_f  of f.  (b) Find lim_(x→∞)  ((ln x)/(x−1)). State its asymptotes.  (c) Draw up a variation table for the curve y = f(x).
Giventhefunctionf(x)=lnxx1(a)StatethedomainDfoff.(b)Findlimxlnxx1.Stateitsasymptotes.(c)Drawupavariationtableforthecurvey=f(x).
Answered by Aziztisffola last updated on 14/Jun/20
 a)D_f =]0;1[∪]1;+∞[   b) lim_(x→∞) f(x)=0
a)Df=]0;1[]1;+[b)limfx(x)=0
Commented by Rio Michael last updated on 14/Jun/20
great sir, is x = 0 an asymptote or  x = 1?? which
greatsir,isx=0anasymptoteorx=1??which
Commented by Aziztisffola last updated on 14/Jun/20
yes x=0 and x=1
yesx=0andx=1
Answered by mathmax by abdo last updated on 14/Jun/20
1) f is defined on ]0,1[∪]1,+∞[  2) lim_(x→+∞)   ((lnx)/(x−1)) =lim_(x→+∞)  ((lnx)/x)×(1/(1−(1/x))) =lim_(x→+∞)  ((lnx)/x)=0  so y=0 is  assymptote alway x=1 is assymtote .  3) f^′ (x) =(((1/x)(x−1)−lnx)/((x−1)^2 )) =(((x−1)−xlnx)/(x(x−1)^2 )) =((ϕ(x))/(x(x−1)^2 ))  ϕ(x) =x−1−xlnx  ⇒ϕ^′ (x) =1−(lnx+1) =−lnx  ϕ^′ >0 ⇔−lnx>0 ⇔ lnx<0 ⇔  0<x<1  x           0                                1                    +∞  ϕ^′          ∣∣              +                        −               ϕ           ∣∣ −∞decr         0    decr         −∞  ⇒ ϕ(x)≤0   ⇒ f^′  <0 ⇒f is strictly ideccreazing  vareiation of f  x                  0                       1                       +∞           lim_(x→1) f(x) =1  f^′ (x)          ∣∣        −          ∣∣              −  f(x)           ∣∣+∞ dec     1     decr           0
1)fisdefinedon]0,1[]1,+[2)limx+lnxx1=limx+lnxx×111x=limx+lnxx=0soy=0isassymptotealwayx=1isassymtote.3)f(x)=1x(x1)lnx(x1)2=(x1)xlnxx(x1)2=φ(x)x(x1)2φ(x)=x1xlnxφ(x)=1(lnx+1)=lnxφ>0lnx>0lnx<00<x<1x01+φ∣∣+φ∣∣decr0decrφ(x)0f<0fisstrictlyideccreazingvareiationoffx01+limx1f(x)=1f(x)∣∣∣∣f(x)∣∣+dec1decr0
Commented by Rio Michael last updated on 14/Jun/20
Brilliant work you two.  thanks
Brilliantworkyoutwo.thanks
Commented by abdomathmax last updated on 15/Jun/20
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *