Menu Close

Given-the-functions-f-x-2x-1-and-f-g-x-x-2-x-2-find-g-x-




Question Number 43353 by pieroo last updated on 10/Sep/18
Given the functions f(x)=2x−1 and f•g(x)=x^2 −x+2,  find g(x)
Giventhefunctionsf(x)=2x1andfg(x)=x2x+2,findg(x)
Commented by maxmathsup by imad last updated on 10/Sep/18
we have f(x)=y ⇒2x−1=y ⇒x =((y+1)/2) ⇒f^(−1) (x) =((x+1)/2)  but fog(x)=x^2 −x+2 ⇒f^(−1) of og(x) =f^(−1) (x^2 −x+2) ⇒  g(x) =f^(−1) (x^2 −x+2) =((x^2 −x+2+1)/2) =((x^2 −x+3)/2) .
wehavef(x)=y2x1=yx=y+12f1(x)=x+12butfog(x)=x2x+2f1ofog(x)=f1(x2x+2)g(x)=f1(x2x+2)=x2x+2+12=x2x+32.
Answered by Joel578 last updated on 10/Sep/18
f(x) = 2x − 1        f(g(x)) = x^2  − x + 2  2g(x) − 1 = x^2  − x + 2               g(x) = ((x^2  − x + 3)/2) = (1/2)x^2  − (1/2)x + (3/2)
f(x)=2x1f(g(x))=x2x+22g(x)1=x2x+2g(x)=x2x+32=12x212x+32
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Sep/18
2g(x)−1=x^2 −x+2  2g(x)=x^2 −x+3  g(x)=((x^2 −x+3)/2)
2g(x)1=x2x+22g(x)=x2x+3g(x)=x2x+32

Leave a Reply

Your email address will not be published. Required fields are marked *