Menu Close

Given-the-lines-l-1-3mx-3y-9-and-l-2-y-mx-c-find-the-value-of-m-and-c-if-the-point-1-2-lie-on-both-lines-hence-the-tangent-of-the-curve-y-mx-c-2-when-it-moves-across-the-x-




Question Number 39591 by Rio Mike last updated on 08/Jul/18
Given the lines   l_1 :−3mx + 3y = 9   and l_(2 ) : y = mx + c  find the value of  m and c if  the point (1,2) lie on both lines.  hence the tangent of the  curve y = (mx + c)^2   when it moves across the x−axis
Giventhelinesl1:3mx+3y=9andl2:y=mx+cfindthevalueofmandcifthepoint(1,2)lieonbothlines.hencethetangentofthecurvey=(mx+c)2whenitmovesacrossthexaxis
Answered by MJS last updated on 08/Jul/18
 ((1),(2) ) on l_1 : −3m+6=9 ⇒ m=−1   ((1),(2) ) on l_2 : 2=−1×1+c ⇒ c=3  y=(3−x)^2   (3−x)^2 =0 ⇒ x=3  curve touches x−axis ⇒ tangent=x−axis  in point  ((3),(0) ) ⇒ t: y=0  if you mean curve moves across y−axis:  y=(3−0)^2 =9  tangent in  ((0),(9) ) :  y=kx+d  d=9  f(x)=(3−x)^2   f′(x)=2x−6  k=f′(0)=−6  t: y=−6x+9
(12)onl1:3m+6=9m=1(12)onl2:2=1×1+cc=3y=(3x)2(3x)2=0x=3curvetouchesxaxistangent=xaxisinpoint(30)t:y=0ifyoumeancurvemovesacrossyaxis:y=(30)2=9tangentin(09):y=kx+dd=9f(x)=(3x)2f(x)=2x6k=f(0)=6t:y=6x+9

Leave a Reply

Your email address will not be published. Required fields are marked *