Menu Close

Given-the-lines-l-1-x-y-5-and-l-2-y-4x-and-l-3-4x-y-1-0-show-that-l-2-is-perpendicular-to-l-3-find-the-point-coordinates-if-x-2y-5-is-colliner-to-l-1-




Question Number 39127 by Rio Mike last updated on 02/Jul/18
Given the lines  l_1 :  x + y = 5 and l_2 : y = 4x  and l_3 ; 4x + y − 1 =0  show that l_(2 )  is perpendicular  to l_3 .  find the point coordinates  if x + 2y = 5 is colliner to l_1
$${Given}\:{the}\:{lines} \\ $$$${l}_{\mathrm{1}} :\:\:{x}\:+\:{y}\:=\:\mathrm{5}\:{and}\:{l}_{\mathrm{2}} :\:{y}\:=\:\mathrm{4}{x} \\ $$$${and}\:{l}_{\mathrm{3}} ;\:\mathrm{4}{x}\:+\:{y}\:−\:\mathrm{1}\:=\mathrm{0} \\ $$$${show}\:{that}\:{l}_{\mathrm{2}\:} \:{is}\:{perpendicular} \\ $$$${to}\:{l}_{\mathrm{3}} . \\ $$$${find}\:{the}\:{point}\:{coordinates} \\ $$$${if}\:{x}\:+\:\mathrm{2}{y}\:=\:\mathrm{5}\:{is}\:{colliner}\:{to}\:{l}_{\mathrm{1}} \\ $$
Commented by mondodotto@gmail.com last updated on 03/Jul/18
two lines are said to be perpindicular if product of their   gradient equals (−1)  from l_2  gradient is 4 and  l_3  gradient is (−4) then  product of these gradient is not (−1)  ∴ l_(2 )  and l_3  not perpendicular lines
$$\boldsymbol{{two}}\:\boldsymbol{{lines}}\:\boldsymbol{{are}}\:\boldsymbol{{said}}\:\boldsymbol{{to}}\:\boldsymbol{{be}}\:\boldsymbol{{perpindicular}}\:\boldsymbol{{if}}\:\boldsymbol{{product}}\:\boldsymbol{{of}}\:\boldsymbol{{their}}\: \\ $$$$\boldsymbol{{gradient}}\:\boldsymbol{{equals}}\:\left(−\mathrm{1}\right) \\ $$$$\boldsymbol{{from}}\:\boldsymbol{{l}}_{\mathrm{2}} \:\boldsymbol{{gradient}}\:\boldsymbol{{is}}\:\mathrm{4}\:\boldsymbol{{and}} \\ $$$$\boldsymbol{{l}}_{\mathrm{3}} \:\boldsymbol{{gradient}}\:\boldsymbol{{is}}\:\left(−\mathrm{4}\right)\:\boldsymbol{{then}} \\ $$$$\boldsymbol{{product}}\:\boldsymbol{{of}}\:\boldsymbol{{these}}\:\boldsymbol{{gradient}}\:\boldsymbol{{is}}\:\boldsymbol{{not}}\:\left(−\mathrm{1}\right) \\ $$$$\therefore\:\boldsymbol{{l}}_{\mathrm{2}\:} \:\boldsymbol{{and}}\:\boldsymbol{{l}}_{\mathrm{3}} \:\boldsymbol{{not}}\:\boldsymbol{{perpendicular}}\:\boldsymbol{{lines}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *