Menu Close

given-the-polar-equation-r-a-2-sin2-show-the-tangents-at-the-poles-of-this-polar-equation-is-pi-4-3pi-4-5pi-4-7pi-4-




Question Number 90099 by Rio Michael last updated on 21/Apr/20
 given the polar equation   r = a^2  sin2θ  show the tangents at   the poles of this polar equation is.   θ = {(π/4),((3π)/4),((5π)/4),((7π)/4)}
giventhepolarequationr=a2sin2θshowthetangentsatthepolesofthispolarequationis.θ={π4,3π4,5π4,7π4}
Commented by jagoll last updated on 21/Apr/20
(dr/dθ) = 2a^2  cos 2θ = 0  cos 2θ = cos (π/2)  2θ = ± (π/2)+ 2kπ  θ = ± (π/4) + kπ   { ((θ = (π/4)+kπ ⇒ θ = { (π/4), ((5π)/4) })),((θ = −(π/4)+kπ ⇒ θ = {((3π)/4), ((7π)/4) })) :}
drdθ=2a2cos2θ=0cos2θ=cosπ22θ=±π2+2kπθ=±π4+kπ{θ=π4+kπθ={π4,5π4}θ=π4+kπθ={3π4,7π4}
Commented by Rio Michael last updated on 21/Apr/20
but sir why did you differentiate when we know that at the poles,  r = 0?
butsirwhydidyoudifferentiatewhenweknowthatatthepoles,r=0?

Leave a Reply

Your email address will not be published. Required fields are marked *