Menu Close

Given-the-position-vectors-v-1-2i-2j-and-v-2-2j-show-that-the-unit-vector-in-the-direction-of-the-vector-v-1-v-2-is-1-5-i-2j-




Question Number 36091 by Rio Mike last updated on 28/May/18
Given the position vectors  v_1 = 2i − 2j and v_2 = 2j,  show that the unit vector in   the direction of the vector   v_1 − v_(2   ) is (1/( (√5)))(i−2j)
$$\mathrm{Given}\:\mathrm{the}\:\mathrm{position}\:\mathrm{vectors} \\ $$$${v}_{\mathrm{1}} =\:\mathrm{2}{i}\:−\:\mathrm{2}{j}\:{and}\:{v}_{\mathrm{2}} =\:\mathrm{2}{j}, \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{unit}\:\mathrm{vector}\:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{the}\:\mathrm{vector}\: \\ $$$${v}_{\mathrm{1}} −\:{v}_{\mathrm{2}\:\:\:} \mathrm{is}\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\mathrm{i}−\mathrm{2j}\right) \\ $$
Commented by prof Abdo imad last updated on 31/May/18
we have v_1 −v_2 = 2i −2j−2j = 2i −4j so the   unit vrctor  in the direction of v_1  −v_2  is  u= (1/(∣∣v_1 −v_2 ∣∣))(v_1 −v_2 ) =(1/( (√(4+16))))(2i−4j)  = (1/(2(√5)))(2i−4j)= (1/( (√5)))(i −2j) .
$${we}\:{have}\:{v}_{\mathrm{1}} −{v}_{\mathrm{2}} =\:\mathrm{2}{i}\:−\mathrm{2}{j}−\mathrm{2}{j}\:=\:\mathrm{2}{i}\:−\mathrm{4}{j}\:{so}\:{the}\: \\ $$$${unit}\:{vrctor}\:\:{in}\:{the}\:{direction}\:{of}\:{v}_{\mathrm{1}} \:−{v}_{\mathrm{2}} \:{is} \\ $$$${u}=\:\frac{\mathrm{1}}{\mid\mid{v}_{\mathrm{1}} −{v}_{\mathrm{2}} \mid\mid}\left({v}_{\mathrm{1}} −{v}_{\mathrm{2}} \right)\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{4}+\mathrm{16}}}\left(\mathrm{2}{i}−\mathrm{4}{j}\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}}\left(\mathrm{2}{i}−\mathrm{4}{j}\right)=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left({i}\:−\mathrm{2}{j}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *