Menu Close

Given-the-roots-of-the-quadratic-equation-4x-2-4x-5-0-are-and-f-x-is-a-quadratic-function-where-f-f-and-f-0-6-Find-f-x-




Question Number 163323 by ZiYangLee last updated on 06/Jan/22
Given the roots of the quadratic equation  4x^2 −4x+5=0 are α and β.    f(x) is a quadratic function where f(α)=β ,  f(β)=α and f(0)=6 .   Find f(x).
Giventherootsofthequadraticequation4x24x+5=0areαandβ.f(x)isaquadraticfunctionwheref(α)=β,f(β)=αandf(0)=6.Findf(x).
Commented by cortano1 last updated on 06/Jan/22
let f(x)= px^2 +qx+6   ⇒ { ((f(α)=pα^2 +qα+6=β)),((f(β)=pβ^2 +qβ+6=α)) :}   (1)+(2)⇒p[(α+β)^2 −2αβ ]+q(α+β)+12=α+β  ⇒p[ 1−(5/2) ]+q(1)+12=1  ⇒−(3/2)p+q=−11  ⇒−3p+2q=−22  ⇒q=((3p−22)/2)  ∴ f(x)= px^2 +(((3p−22)/2))x+6
letf(x)=px2+qx+6{f(α)=pα2+qα+6=βf(β)=pβ2+qβ+6=α(1)+(2)p[(α+β)22αβ]+q(α+β)+12=α+βp[152]+q(1)+12=132p+q=113p+2q=22q=3p222f(x)=px2+(3p222)x+6
Answered by Rasheed.Sindhi last updated on 06/Jan/22
f(x)=ax^2 +bx+c (say)  f(0)=c=6  f(α)=aα^2 +bα+6=β.............(i)  f(β)=aβ^2 +bβ+6=α..............(ii)  (i)+(ii):  a(α^2 +β^2 )+b(α+β)+12=α+β  a{(α+β)^2 −2αβ}+b(α+β)+12=α+β  4x^2 −4x+5=0⇒ { ((α+β=1)),((αβ=(5/4))) :}  a{(1)^2 −2((5/4))}+b(1)+12=1  a(−(3/2))+b=−11  3a−2b=22.....................A  (i)−(ii):  f(α)−f(β)=a(α^2 −β^2 )+b(α−β)=−(α−β)                 =a(α+β)+b=−(α+β)  ;α≠β              a(1)+b=−(1)  a+b=−1......................B  A & B:  3a−2(−1−a)=22  3a+2+2a=22  a=4⇒b=−5  f(x)=4x^2 −5x+6
f(x)=ax2+bx+c(say)f(0)=c=6f(α)=aα2+bα+6=β.(i)f(β)=aβ2+bβ+6=α..(ii)(i)+(ii):a(α2+β2)+b(α+β)+12=α+βa{(α+β)22αβ}+b(α+β)+12=α+β4x24x+5=0{α+β=1αβ=54a{(1)22(54)}+b(1)+12=1a(32)+b=113a2b=22A(i)(ii):f(α)f(β)=a(α2β2)+b(αβ)=(αβ)=a(α+β)+b=(α+β);αβa(1)+b=(1)a+b=1.BA&B:3a2(1a)=223a+2+2a=22a=4b=5f(x)=4x25x+6
Commented by peter frank last updated on 06/Jan/22
great
great
Commented by Rasheed.Sindhi last updated on 06/Jan/22
Thank you Peter sir!
ThankyouPetersir!
Commented by Tawa11 last updated on 06/Jan/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *