Menu Close

Given-the-sequence-u-n-n-N-defined-by-1-2-n-if-n-0mod-3-1-3-n-1-if-n-1mod-3-u-n-1-u-n-2-2-if-n-2mod-3-a-Determine-the-first-8-th-terms-of-u-n-n-N




Question Number 98880 by Ar Brandon last updated on 16/Jun/20
Given the sequence (u_n )_(n∈N^∗ )  defined by  { (((1/2^n ) if n≡0mod(3))),(((1/3^n )+1   if n≡1mod(3))),((((u_(n−1) +u_(n+2) )/2) if n≡2mod(3))) :}  a\Determine the first−8^(th)  terms of (u_n )_(n∈N^∗ )   b\Show that the sequences (v_n )_(n∈N) , (w_n )_(n∈N) , and (z_n )_(n∈N)   where v_n =u_(3n) , w_n =u_(3n+1)  and z_n =u_(3n+2 ) are convervent  and find their respective limits  c\Deduce the nature of (u_n )_(n∈N^∗ )
$$\mathcal{G}\mathrm{iven}\:\mathrm{the}\:\mathrm{sequence}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}^{\ast} } \:\mathrm{defined}\:\mathrm{by}\:\begin{cases}{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}} }\:\mathrm{if}\:\mathrm{n}\equiv\mathrm{0mod}\left(\mathrm{3}\right)}\\{\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{n}} }+\mathrm{1}\:\:\:\mathrm{if}\:\mathrm{n}\equiv\mathrm{1mod}\left(\mathrm{3}\right)}\\{\frac{\mathrm{u}_{\mathrm{n}−\mathrm{1}} +\mathrm{u}_{\mathrm{n}+\mathrm{2}} }{\mathrm{2}}\:\mathrm{if}\:\mathrm{n}\equiv\mathrm{2mod}\left(\mathrm{3}\right)}\end{cases} \\ $$$$\mathrm{a}\backslash\mathcal{D}\mathrm{etermine}\:\mathrm{the}\:\mathrm{first}−\mathrm{8}^{\mathrm{th}} \:\mathrm{terms}\:\mathrm{of}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}^{\ast} } \\ $$$$\mathrm{b}\backslash\mathcal{S}\mathrm{how}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sequences}\:\left(\mathrm{v}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} ,\:\left(\mathrm{w}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} ,\:\mathrm{and}\:\left(\mathrm{z}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}} \\ $$$$\mathrm{where}\:\mathrm{v}_{\mathrm{n}} =\mathrm{u}_{\mathrm{3n}} ,\:\mathrm{w}_{\mathrm{n}} =\mathrm{u}_{\mathrm{3n}+\mathrm{1}} \:\mathrm{and}\:\mathrm{z}_{\mathrm{n}} =\mathrm{u}_{\mathrm{3n}+\mathrm{2}\:} \mathrm{are}\:\mathrm{convervent} \\ $$$$\mathrm{and}\:\mathrm{find}\:\mathrm{their}\:\mathrm{respective}\:\mathrm{limits} \\ $$$$\mathrm{c}\backslash\mathcal{D}\mathrm{educe}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of}\:\left(\mathrm{u}_{\mathrm{n}} \right)_{\mathrm{n}\in\mathbb{N}^{\ast} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *