Given-the-sequence-U-n-n-N-defined-by-U-0-1-and-U-n-1-f-U-n-where-f-x-x-x-1-2-Show-by-mathematical-induction-that-n-N-0-lt-U-n-1-n- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 98443 by Ar Brandon last updated on 14/Jun/20 Giventhesequence(Un)n∈NdefinedbyU0=1andUn+1=f(Un)wheref(x)=x(x+1)2Showbymathematicalinductionthat∀n∈N∗0<Un⩽1n Answered by maths mind last updated on 14/Jun/20 f(x)=1x+1−1(x+1)2f′(x)=−1(x+1)2+2(x+1)3=1−x(1+x)3⩾0,∀x∈[0,1]0<U0=1⩽1trueweassumeThat∀n∈N0<Un⩽1n⩽1sincefisincreasingover[0,1]⇒⇒f(0)<f(un)⩽f(1n)⇔0<Un+1⩽n(n+1)2=nn+1.1n+1⩽1.1n+1=1n+1⇒∀n∈N0<Un⩽1n Commented by Ar Brandon last updated on 14/Jun/20 Thank you �� Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-163978Next Next post: 2018-2017-gt-2017-2018-or-2018-2017-lt-2017-2018- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.