Menu Close

Given-the-sequences-u-n-n-N-and-v-n-n-N-defined-by-u-n-k-0-n-1-k-and-v-n-u-n-1-n-n-a-Show-that-u-n-n-is-of-Cauchy-Deduce-that-u-n-n-converges-b-Show-that-u-n




Question Number 97781 by Ar Brandon last updated on 09/Jun/20
Given the sequences (u_n )_(n∈N)  and (v_n )_(n∈N) defined  by u_n =Σ_(k=0) ^n (1/(k!)) and v_n =u_n +(1/(n(n!)))  a\ Show that (u_n )_n  is of Cauchy. Deduce that  (u_n )_n  converges.  b\ Show that (u_n )_n  and (v_n )_n  are adjacent  c\ Show that their common limit is not a rational  number.
Giventhesequences(un)nNand(vn)nNdefinedbyun=nk=01k!andvn=un+1n(n!)aShowthat(un)nisofCauchy.Deducethat(un)nconverges.bShowthat(un)nand(vn)nareadjacentcShowthattheircommonlimitisnotarationalnumber.
Answered by maths mind last updated on 10/Jun/20
for  ∀k≥2   k!≥k(k−1)  U_(n+m) −U_n =Σ_(k=1) ^m U_(k+n) ≤Σ_(k=1) ^m (1/((k+n)(k+n−1)))=Σ_(k=1) ^m ((1/(n+k−1))−(1/(n+k)))  =(1/m)−(1/(n+m))≤(1/m)....1  U_n  cauchy ⇔∀ε>0 ∃N ,∀n,m ≥N ∣U_n −U_m ∣<ε  we choose N=E((1/ε))+1⇒U_n −U_m ≤(1/m)≤(1/N)<ε  ....by1  U_n is cauchy since is reel sequence ⇒U_n   converge  b) U_(n+1) −U_n =(1/((n+1)!))>0  U_n   is ibcreasing  V_(n+1) −V_n =(1/((n+1)!))+(1/((n+1)(n+1)!))−(1/(n.n!))  ((n+2−(n+1)(n+1))/((n+1)(n+1)!))=((−n^2 −n+1)/((n+1)(n+1)!))<0,∀n≥1 V_n  decreasing  U_n −V_n =(1/(nn!))→0  U_n ,Vn are adjacente  if x=(a/b)= lim U_n ∈IQ    Σ_(n=0) ^(+∞) (1/(n!))=(a/b)=((a(b−1)!)/(b!))=Σ_(k≥0) (1/(k!))  ⇔a(b−1)!=b!.(Σ_(k=0) ^b (1/(k!)))+(1/(b+1))+Σ_(k≥2) ((b!)/((b+k)!))  k≥2⇒((b!)/((b+k)!))≤(1/((b+k)(b+k−1)))  ⇒Σ_(k≥2) ((b!)/((b+k)!))≤Σ_(k≥2) ((1/((b+k)(b+k−1))))=(1/(b+1))  ⇒∣a(b−1)!−b!.Σ_(k=0) ^b (1/(k!))∣≤(2/(b+1))<1  if b≥2....E  but a(b−1)! ∈N and b!.Σ_(k=0) ^b (1/(k!))∈N  ⇒∣a(b−1)!−b!.Σ_(k=0) ^b (1/(k!))∣∈N⇒Eabsurd  ⇒x∉Q
fork2k!k(k1)Un+mUn=mk=1Uk+nmk=11(k+n)(k+n1)=mk=1(1n+k11n+k)=1m1n+m1m.1Uncauchyϵ>0N,n,mNUnUm∣<ϵwechooseN=E(1ϵ)+1UnUm1m1N<ϵ.by1UniscauchysinceisreelsequenceUnconvergeb)Un+1Un=1(n+1)!>0UnisibcreasingVn+1Vn=1(n+1)!+1(n+1)(n+1)!1n.n!n+2(n+1)(n+1)(n+1)(n+1)!=n2n+1(n+1)(n+1)!<0,n1VndecreasingUnVn=1nn!0Un,Vnareadjacenteifx=ab=limUnIQ+n=01n!=ab=a(b1)!b!=k01k!a(b1)!=b!.(bk=01k!)+1b+1+k2b!(b+k)!k2b!(b+k)!1(b+k)(b+k1)k2b!(b+k)!k2(1(b+k)(b+k1))=1b+1⇒∣a(b1)!b!.bk=01k!∣⩽2b+1<1ifb2.Ebuta(b1)!Nandb!.bk=01k!N⇒∣a(b1)!b!.bk=01k!∣∈NEabsurdxQ
Commented by Ar Brandon last updated on 10/Jun/20
Thanks for your method,
Thanksforyourmethod,

Leave a Reply

Your email address will not be published. Required fields are marked *