Given-the-sequences-u-n-n-N-and-v-n-n-N-defined-by-u-n-k-0-n-1-k-and-v-n-u-n-1-n-n-a-Show-that-u-n-n-is-of-Cauchy-Deduce-that-u-n-n-converges-b-Show-that-u-n Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 97781 by Ar Brandon last updated on 09/Jun/20 Giventhesequences(un)n∈Nand(vn)n∈Ndefinedbyun=∑nk=01k!andvn=un+1n(n!)a∖Showthat(un)nisofCauchy.Deducethat(un)nconverges.b∖Showthat(un)nand(vn)nareadjacentc∖Showthattheircommonlimitisnotarationalnumber. Answered by maths mind last updated on 10/Jun/20 for∀k⩾2k!⩾k(k−1)Un+m−Un=∑mk=1Uk+n⩽∑mk=11(k+n)(k+n−1)=∑mk=1(1n+k−1−1n+k)=1m−1n+m⩽1m….1Uncauchy⇔∀ϵ>0∃N,∀n,m⩾N∣Un−Um∣<ϵwechooseN=E(1ϵ)+1⇒Un−Um⩽1m⩽1N<ϵ….by1Uniscauchysinceisreelsequence⇒Unconvergeb)Un+1−Un=1(n+1)!>0UnisibcreasingVn+1−Vn=1(n+1)!+1(n+1)(n+1)!−1n.n!n+2−(n+1)(n+1)(n+1)(n+1)!=−n2−n+1(n+1)(n+1)!<0,∀n⩾1VndecreasingUn−Vn=1nn!→0Un,Vnareadjacenteifx=ab=limUn∈IQ∑+∞n=01n!=ab=a(b−1)!b!=∑k⩾01k!⇔a(b−1)!=b!.(∑bk=01k!)+1b+1+∑k⩾2b!(b+k)!k⩾2⇒b!(b+k)!⩽1(b+k)(b+k−1)⇒∑k⩾2b!(b+k)!⩽∑k⩾2(1(b+k)(b+k−1))=1b+1⇒∣a(b−1)!−b!.∑bk=01k!∣⩽2b+1<1ifb⩾2….Ebuta(b−1)!∈Nandb!.∑bk=01k!∈N⇒∣a(b−1)!−b!.∑bk=01k!∣∈N⇒Eabsurd⇒x∉Q Commented by Ar Brandon last updated on 10/Jun/20 Thanksforyourmethod, Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-the-non-negative-integer-solutions-of-2x-3y-5z-60-Next Next post: Evaluate-sinx-1-sin-2-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.