Menu Close

Given-u-0-a-u-n-1-a-1-2-1-1-b-n-u-n-a-gt-0-b-gt-1-a-Calculate-u-1-u-2-and-u-3-b-Show-that-the-sequence-u-n-n-N-is-increasing-c-Deduce-that-u-




Question Number 96489 by Ar Brandon last updated on 01/Jun/20
Given   { ((u_0 =a)),((u_(n+1) =a+(1/2)(1−(1/b^n ))u_n )) :}  a>0  b>1  a\  Calculate  u_1 ,  u_2 ,  and  u_3 .  b\  Show  that  the  sequence  (u_n )_(n∈N)   is  increasing.  c\  Deduce  that  (u_n )_(n∈N)   converges  and  determine  its  limit.
Given{u0=aun+1=a+12(11bn)una>0b>1aCalculateu1,u2,andu3.bShowthatthesequence(un)nNisincreasing.cDeducethat(un)nNconvergesanddetermineitslimit.
Answered by Rio Michael last updated on 01/Jun/20
(a)u_0  = a ⇒ u_1  = a + (1/2)(1−(1/b^0 ))u_0   ⇒ u_1  = a  u_2  = a + (1/2)(1 + (1/b))a = a[1 + (1/2)(1 − (1/b))]  u_3  =[ a + (1/2)(1−(1/b^2 ))]{a[1 + (1/2)(1−(1/b))]}  (b) n∈N and a > 0, b > 1  a [1 + (1/2)(1−(1/b))] > a for  a > 0 and b > 1  [ a + (1/2)(1−(1/b^2 ))]{a[1 + (1/2)(1−(1/b))]} > a[1 + (1/2)(1−(1/b))]   ⇒ the sequence is increasing for n ∈ N.  (c) (1/2)(1−(1/b^n ))u_n  < 1 ∀ n ∈ N ⇒ u_n  is convergent
(a)u0=au1=a+12(11b0)u0u1=au2=a+12(1+1b)a=a[1+12(11b)]u3=[a+12(11b2)]{a[1+12(11b)]}(b)nNanda>0,b>1a[1+12(11b)]>afora>0andb>1[a+12(11b2)]{a[1+12(11b)]}>a[1+12(11b)]thesequenceisincreasingfornN.(c)12(11bn)un<1nNunisconvergent
Commented by Ar Brandon last updated on 01/Jun/20
Wow, so fast ! Thank you ��

Leave a Reply

Your email address will not be published. Required fields are marked *