Menu Close

Given-u-0-C-u-n-1-u-n-u-n-2-n-N-where-u-n-n-N-is-a-complex-sequence-Determinate-the-sequence-Im-u-n-n-N-and-calculate-its-limit-NB-Im-u-n-is-the-co




Question Number 164478 by mathocean1 last updated on 17/Jan/22
Given  { ((u_0 =α ∈ C)),((u_(n+1) =((u_n +∣u_n ∣)/2))) :} ; n∈ N  where (u_n ) _(n∈N)  is a complex sequence.  Determinate the sequence (Im(u_n )) _(n∈N)   and calculate its limit.  NB: Im(u_n ) is the complex part of u_(n.)
Given{u0=αCun+1=un+un2;nNwhere(un)nNisacomplexsequence.Determinatethesequence(Im(un))nNandcalculateitslimit.NB:Im(un)isthecomplexpartofun.
Answered by Rasheed.Sindhi last updated on 18/Jan/22
u_n =a_n +ib_n   u_0 =α=a_0 +ib_0   a_(n+1) +ib_(n+1) =((a_n +ib_n +∣a_n +ib_n ∣)/2)  a_(n+1) +ib_(n+1) =((a_n +(√(a_n ^2 +b_n ^2 )))/2)+((ib_n )/2)  im(u_(n+1) ):   b_(n+1) =(b_n /2)  ⇒^(n→n−1)     b_n =(b_(n−1) /2)  b_1 =(b_0 /2)  b_2 =(b_1 /2)=((b_0 /2)/2)=(b_0 /2^2 )  b_3 =(b_2 /2)=(b_0 /2^3 )  ...  b_n =(b_0 /2^n )=((im(α))/2^n )  lim_(n→∞) b_n  = lim_(n→∞) ((im(α))/2^n )=0                                 [∵ im(α) is constant]
un=an+ibnu0=α=a0+ib0an+1+ibn+1=an+ibn+an+ibn2an+1+ibn+1=an+an2+bn22+ibn2im(un+1):bn+1=bn2nn1bn=bn12b1=b02b2=b12=b022=b022b3=b22=b023bn=b02n=im(α)2nlimnbn=limnim(α)2n=0[im(α)isconstant]
Commented by mathocean1 last updated on 19/Jan/22
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *