Menu Close

Given-x-1-x-2cos-find-x-n-1-x-n-




Question Number 104727 by bemath last updated on 23/Jul/20
Given x + (1/x) = 2cos θ  find x^n +(1/x^n ) = ?
Givenx+1x=2cosθfindxn+1xn=?
Commented by bemath last updated on 23/Jul/20
thank you all
thankyouall
Answered by mr W last updated on 23/Jul/20
for x∈R  for x>0: 2≤x+(1/x)=2 cos θ≤2  ⇒x+(1/x)=2 ⇒x=1 ⇒x^n +(1/x^n )=2    for x<0: −2≥x+(1/x)=2 cos θ≥−2  ⇒x+(1/x)=−2 ⇒x=−1 ⇒x^n +(1/x^n )=(−1)^n 2
forxRforx>0:2x+1x=2cosθ2x+1x=2x=1xn+1xn=2forx<0:2x+1x=2cosθ2x+1x=2x=1xn+1xn=(1)n2
Commented by 1549442205PVT last updated on 23/Jul/20
Great Sir!
GreatSir!
Answered by john santu last updated on 23/Jul/20
we solve the given equation   x^2 −2xcos θ +1 = 0 for x . Discriminat   Δ= 4cos^2 θ−4 = −4sin^2 θ  so the roots are cos θ ± i sin θ  By De Moivre′s formula  x^n  = cos (nθ) +i sin (nθ)  x^(−n)  = cos (−nθ)+i sin (−nθ)  and therefore   x^n  +x^(−n)  = {cos (nθ)+i sin (nθ)} +                         { cos (−nθ)+i sin (−nθ)}  x^n +(1/x^n ) = 2cos (nθ)   (JS ⊛ )
wesolvethegivenequationx22xcosθ+1=0forx.DiscriminatΔ=4cos2θ4=4sin2θsotherootsarecosθ±isinθByDeMoivresformulaxn=cos(nθ)+isin(nθ)xn=cos(nθ)+isin(nθ)andthereforexn+xn={cos(nθ)+isin(nθ)}+{cos(nθ)+isin(nθ)}xn+1xn=2cos(nθ)(JS)
Answered by Dwaipayan Shikari last updated on 23/Jul/20
x^2 −2xcosθ+1=0  x=((2cosθ+(√(4cos^2 θ−4)))/2)=cosθ+2isinθ  x^n =cosnθ+2isinnθ  (De moivre′s theorem)  (1/x^n )=cosnθ−2isinnθ  x^n +(1/x^n )=2cosnθ
x22xcosθ+1=0x=2cosθ+4cos2θ42=cosθ+2isinθxn=cosnθ+2isinnθ(Demoivrestheorem)1xn=cosnθ2isinnθxn+1xn=2cosnθ
Answered by mathmax by abdo last updated on 24/Jul/20
x+(1/x) =2cosθ ⇒x^2  +1 =2xcosθ ⇒x^2  −2xcosθ +1 =0  Δ^′  =cos^2 θ−1 =−sin^2 θ =(isinθ)^2  ⇒z_1 =cosθ +isinθ =e^(iθ)  and  z_2 =cosθ −isinθ =e^(−iθ)   case 1 ) x =z_1  ⇒x^n  +(1/x^n ) =z_1 ^n  +(1/z_1 ^n )  = cos(nθ) +isin(nθ)+(1/(cos(nθ)+isin(nθ)))  =cos(nθ) +isin(nθ)+cos(nθ)−isin(nθ) =2cos(nθ)  case 2) x =z_2     ⇒x^(n )  +(1/x^n ) =2cos(nθ) because z_2 =z_1 ^− )
x+1x=2cosθx2+1=2xcosθx22xcosθ+1=0Δ=cos2θ1=sin2θ=(isinθ)2z1=cosθ+isinθ=eiθandz2=cosθisinθ=eiθcase1)x=z1xn+1xn=z1n+1z1n=cos(nθ)+isin(nθ)+1cos(nθ)+isin(nθ)=cos(nθ)+isin(nθ)+cos(nθ)isin(nθ)=2cos(nθ)case2)x=z2xn+1xn=2cos(nθ)becausez2=z1)

Leave a Reply

Your email address will not be published. Required fields are marked *