Menu Close

Given-x-2-12-x-5-then-x-2-x-




Question Number 115544 by bemath last updated on 26/Sep/20
Given x^2 +12(√x) = 5  then x+2(√x) ?
$${Given}\:{x}^{\mathrm{2}} +\mathrm{12}\sqrt{{x}}\:=\:\mathrm{5} \\ $$$${then}\:{x}+\mathrm{2}\sqrt{{x}}\:? \\ $$
Commented by MJS_new last updated on 26/Sep/20
x^2 +12(√x)=5  has got 1 real and 2 complex solutions:  x=3−2(√2)∨x=−3±4i  ⇒ x+2(√x)=1∨x+2(√x)=−1±8i
$${x}^{\mathrm{2}} +\mathrm{12}\sqrt{{x}}=\mathrm{5} \\ $$$$\mathrm{has}\:\mathrm{got}\:\mathrm{1}\:\mathrm{real}\:\mathrm{and}\:\mathrm{2}\:\mathrm{complex}\:\mathrm{solutions}: \\ $$$${x}=\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\vee{x}=−\mathrm{3}\pm\mathrm{4i} \\ $$$$\Rightarrow\:{x}+\mathrm{2}\sqrt{{x}}=\mathrm{1}\vee{x}+\mathrm{2}\sqrt{{x}}=−\mathrm{1}\pm\mathrm{8i} \\ $$
Answered by bobhans last updated on 26/Sep/20
let (√x) = w ; w≥0⇒ w^4 +12w−5=0  factoring  (w^2 +2w−1)(w^2 −2w+5)=0  for w^2 −2w+5 > 0 , ∀w∈R  for w^2 +2w−1=0  w^2 +2w = 1 ⇒ ((√x))^2 +2(√x) = 1  ⇒ x+2(√x) = 1
$${let}\:\sqrt{{x}}\:=\:{w}\:;\:{w}\geqslant\mathrm{0}\Rightarrow\:{w}^{\mathrm{4}} +\mathrm{12}{w}−\mathrm{5}=\mathrm{0} \\ $$$${factoring} \\ $$$$\left({w}^{\mathrm{2}} +\mathrm{2}{w}−\mathrm{1}\right)\left({w}^{\mathrm{2}} −\mathrm{2}{w}+\mathrm{5}\right)=\mathrm{0} \\ $$$${for}\:{w}^{\mathrm{2}} −\mathrm{2}{w}+\mathrm{5}\:>\:\mathrm{0}\:,\:\forall{w}\in\mathbb{R} \\ $$$${for}\:{w}^{\mathrm{2}} +\mathrm{2}{w}−\mathrm{1}=\mathrm{0} \\ $$$${w}^{\mathrm{2}} +\mathrm{2}{w}\:=\:\mathrm{1}\:\Rightarrow\:\left(\sqrt{{x}}\right)^{\mathrm{2}} +\mathrm{2}\sqrt{{x}}\:=\:\mathrm{1} \\ $$$$\Rightarrow\:{x}+\mathrm{2}\sqrt{{x}}\:=\:\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *