Menu Close

Given-x-2-2xy-3x-1-4y-2-2xy-6y-1-find-2y-x-




Question Number 85104 by jagoll last updated on 19/Mar/20
Given    { ((x^2 −2xy−3x = −1)),((4y^2 −2xy+6y = −1)) :}  find 2y − x
$$\mathrm{Given}\: \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{2}} −\mathrm{2xy}−\mathrm{3x}\:=\:−\mathrm{1}}\\{\mathrm{4y}^{\mathrm{2}} −\mathrm{2xy}+\mathrm{6y}\:=\:−\mathrm{1}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{2y}\:−\:\mathrm{x} \\ $$
Commented by john santu last updated on 19/Mar/20
let 2y − x = k  ⇒ 4y^2 −4xy+x^2  = k^2   (1)+(2) ⇒4y^2 −4xy+x^2 −3x+6y=−2  ⇒ k^2 −3(x−2y)=−2  ⇒k^2 +3k+2=0  ⇒(k+2)(k+1)=0 →  { ((k=−2)),((k=−1)) :}
$$\mathrm{let}\:\mathrm{2y}\:−\:\mathrm{x}\:=\:\mathrm{k} \\ $$$$\Rightarrow\:\mathrm{4y}^{\mathrm{2}} −\mathrm{4xy}+\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{k}^{\mathrm{2}} \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\:\Rightarrow\mathrm{4y}^{\mathrm{2}} −\mathrm{4xy}+\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{6y}=−\mathrm{2} \\ $$$$\Rightarrow\:\mathrm{k}^{\mathrm{2}} −\mathrm{3}\left(\mathrm{x}−\mathrm{2y}\right)=−\mathrm{2} \\ $$$$\Rightarrow\mathrm{k}^{\mathrm{2}} +\mathrm{3k}+\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{k}+\mathrm{2}\right)\left(\mathrm{k}+\mathrm{1}\right)=\mathrm{0}\:\rightarrow\:\begin{cases}{\mathrm{k}=−\mathrm{2}}\\{\mathrm{k}=−\mathrm{1}}\end{cases} \\ $$
Commented by jagoll last updated on 19/Mar/20
thank you mr john & mjs
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{mr}\:\mathrm{john}\:\&\:\mathrm{mjs} \\ $$
Answered by MJS last updated on 19/Mar/20
(1) ⇒ y=(1/(2x))−(3/2)+(x/2)  (2)  2−(3/x)+(1/x^2 )=0  x^2 −(3/2)x+(1/2)=0  ⇒ x=(1/2)∨x=1 ⇒ y=−(1/4)∨y=−(1/2)
$$\left(\mathrm{1}\right)\:\Rightarrow\:{y}=\frac{\mathrm{1}}{\mathrm{2}{x}}−\frac{\mathrm{3}}{\mathrm{2}}+\frac{{x}}{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right) \\ $$$$\mathrm{2}−\frac{\mathrm{3}}{{x}}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\frac{\mathrm{3}}{\mathrm{2}}{x}+\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow\:{x}=\frac{\mathrm{1}}{\mathrm{2}}\vee{x}=\mathrm{1}\:\Rightarrow\:{y}=−\frac{\mathrm{1}}{\mathrm{4}}\vee{y}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *