Menu Close

given-x-2-pi-2-3-4-1-n-cos-nx-n-2-show-that-1-2n-1-2-pi-2-8-




Question Number 167820 by MWSuSon last updated on 26/Mar/22
given  x^2 =(π^2 /3)+4Σ(−1)^n ((cos(nx))/n^2 ), show that Σ(1/((2n−1)^2 ))=(π^2 /8)
givenx2=π23+4Σ(1)ncos(nx)n2,showthatΣ1(2n1)2=π28
Answered by Mathspace last updated on 26/Mar/22
x^2 =(π^2 /3)+4Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(nx)  x=(π/2) ⇒(π^2 /4)=(π^2 /3)+4Σ_(n=1) ^∞ (((−1)^n )/n^2 )cos(((nπ)/2))  n=2m⇒cos(n(π/2))=(−1)^m   n=2m+1 ⇒cos(((nπ)/2))=0 ⇒  4Σ_(m=1) ^∞ (((−1)^(2m) (−1)^m )/(4m^2 ))=(π^2 /4)−(π^2 /3)  =−(π^2 /(12)) ⇒Σ_(m=1) ^∞ (((−1)^m )/m^2 )=−(π^2 /(12)) ⇒  (1/4)Σ_(n=1) ^∞ (1/n^2 )−Σ_(n=0) ^∞ (1/((2n+1)^2 ))=−(π^2 /(12))  ⇒Σ_(n=0) ^∞  (1/((2n+1)^2 ))=(1/4)(π^2 /6)+(π^2 /(12))  =((π^2 +2π^2 )/(24))=((3π^2 )/(24))=(π^2 /8)  n=r−1⇒Σ_(r=1) ^∞  (1/((2r−1)^2 ))=(π^2 /8)
x2=π23+4n=1(1)nn2cos(nx)x=π2π24=π23+4n=1(1)nn2cos(nπ2)n=2mcos(nπ2)=(1)mn=2m+1cos(nπ2)=04m=1(1)2m(1)m4m2=π24π23=π212m=1(1)mm2=π21214n=11n2n=01(2n+1)2=π212n=01(2n+1)2=14π26+π212=π2+2π224=3π224=π28n=r1r=11(2r1)2=π28

Leave a Reply

Your email address will not be published. Required fields are marked *