Menu Close

Given-x-3-3x-2-2-6x-2-2-8-0-then-x-5-41x-2-2022-




Question Number 166954 by cortano1 last updated on 03/Mar/22
 Given x^3 −3x^2 (√2) +6x−2(√2)−8=0   then x^5 −41x^2 +2022 =?
Givenx33x22+6x228=0thenx541x2+2022=?
Answered by som(math1967) last updated on 03/Mar/22
x^3 −3.x^2 .(√2)+3.x.((√2))^2 −((√2))^3 =8  ⇒(x−(√2))^3 =2^3   ⇒x=2+(√2)  ∴ x^5 −41x^2 +2022  =(2+(√2))^5 −41(2+(√2))^2 +2022  =32+5×16×(√2)+10×8×2+10×4×2(√2)   +5×2×4+4(√2)−41(4+4(√2)+2)+2022  =32+160+40+80(√2)+80(√2)+4(√2)  −246−164(√2)+2022  =2022−14=2008
x33.x2.2+3.x.(2)2(2)3=8(x2)3=23x=2+2x541x2+2022=(2+2)541(2+2)2+2022=32+5×16×2+10×8×2+10×4×22+5×2×4+4241(4+42+2)+2022=32+160+40+802+802+422461642+2022=202214=2008

Leave a Reply

Your email address will not be published. Required fields are marked *