Menu Close

Given-x-c-R-u-n-n-N-u-0-0-u-n-1-xsin-u-n-c-1-Show-that-u-n-1-u-n-c-x-n-2-Show-that-x-lt-1-et-m-n-u-m-u-n-c-x-n-1-x-3-Deduct-that-u-n-is




Question Number 167181 by mathocean1 last updated on 08/Mar/22
Given x, c ∈ R.  (u_n )_(n∈N ) : { ((u_0 =0)),((u_(n+1) =xsin(u_n )+c)) :}  1.Show that ∣u_(n+1) −u_n ∣≤∣c∣∣x^n ∣.  2.Show that : (∣x∣<1 et m≥n ⇒∣u_m −u_n ∣≤((∣c∣∣x^n ∣)/(1−∣x∣))  3.Deduct that u_n  is convergent and  calculate its limit.
Givenx,cR.(un)nN:{u0=0un+1=xsin(un)+c1.Showthatun+1un∣⩽∣c∣∣xn.2.Showthat:(x∣<1etmn⇒∣umun∣⩽c∣∣xn1x3.Deductthatunisconvergentandcalculateitslimit.
Answered by mindispower last updated on 09/Mar/22
n=0  ∣U_1 −U_0 ∣=∣c∣ True  suppose ∀n ∣U_(n+1) −U_n ∣<∣c∣∣x^n ∣  we show That ∣u_(n+2) −u_(n+1) ∣<∣c∣∣x∣^(n+1)   ∀n∈N^∗   ∣U_(n+2) −U_(n+1) ∣=∣xsin(u_(n+1) )−xsin(u_n )∣  =∣x∣.∣sin(U_(n+1) )−sin(U_n )∣....(E)  ∀(a,b)∈R^2  We have  ∣sin(a)−sin(b)∣<∣a−b∣  (E)≤∣x∣.∣U_(n+1) −U_n ∣≤∣x∣.∣c∣.∣x∣^n =∣c∣∣x^(n+1)  true  (2) use m=n+k  and ∣U_m −U_n ∣=∣Σ_(k=n) ^(m−1) U_(k+1) −U_k ∣<Σ∣U_(k+1) −U_k ∣ and Quatiom 1
n=0U1U0∣=∣cTruesupposenUn+1Un∣<∣c∣∣xnweshowThatun+2un+1∣<∣c∣∣xn+1nNUn+2Un+1∣=∣xsin(un+1)xsin(un)=∣x.sin(Un+1)sin(Un).(E)(a,b)R2Wehavesin(a)sin(b)∣<∣ab(E)⩽∣x.Un+1Un∣⩽∣x.c.xn=∣c∣∣xn+1true(2)usem=n+kandUmUn∣=∣m1k=nUk+1Uk∣<ΣUk+1UkandQuatiom1

Leave a Reply

Your email address will not be published. Required fields are marked *