Question Number 162823 by john_santu last updated on 01/Jan/22

$$\:\:{Given}:\:\:{x}.{p}\left({x}−\mathrm{1}\right)=\left({x}−\mathrm{5}\right).{p}\left({x}\right) \\ $$$$\:\:{and}\:{p}\left(−\mathrm{1}\right)=\mathrm{1}.\: \\ $$$$\:\:{Find}\:{p}\left(\frac{\mathrm{1}}{\mathrm{2}}\right). \\ $$
Answered by mr W last updated on 02/Jan/22

$${p}\left({x}\right)=\frac{{x}}{{x}−\mathrm{5}}×{p}\left({x}−\mathrm{1}\right) \\ $$$${p}\left({x}\right)=\frac{{x}\left({x}−\mathrm{1}\right)}{\left({x}−\mathrm{5}\right)\left({x}−\mathrm{6}\right)}×{p}\left({x}−\mathrm{2}\right) \\ $$$$… \\ $$$${p}\left({x}\right)=\frac{{x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)…×\mathrm{7}×\mathrm{6}}{\left({x}−\mathrm{5}\right)\left({x}−\mathrm{6}\right)\left({x}−\mathrm{7}\right)…×\mathrm{2}×\mathrm{1}}×{p}\left(\mathrm{5}\right) \\ $$$${p}\left({x}\right)=\frac{{x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)\left({x}−\mathrm{5}\right)\left({x}−\mathrm{6}\right)…×\mathrm{7}×\mathrm{6}×\mathrm{5}×\mathrm{4}×\mathrm{3}×\mathrm{2}×\mathrm{1}}{\mathrm{5}×\mathrm{4}×\mathrm{3}×\mathrm{2}×\mathrm{1}×\left({x}−\mathrm{5}\right)\left({x}−\mathrm{6}\right)\left({x}−\mathrm{7}\right)…×\mathrm{2}×\mathrm{1}}×{p}\left(\mathrm{5}\right) \\ $$$${p}\left({x}\right)=\frac{{x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)}{\mathrm{5}×\mathrm{4}×\mathrm{3}×\mathrm{2}×\mathrm{1}}×{p}\left(\mathrm{5}\right) \\ $$$$\Rightarrow{p}\left({x}\right)=\frac{{x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)}{\mathrm{120}}×{p}\left(\mathrm{5}\right) \\ $$$${p}\left(−\mathrm{1}\right)=\frac{\left(−\mathrm{1}\right)\left(−\mathrm{2}\right)\left(−\mathrm{3}\right)\left(−\mathrm{4}\right)\left(−\mathrm{5}\right)}{\mathrm{120}}×{p}\left(\mathrm{5}\right)=\mathrm{1} \\ $$$$\Rightarrow{p}\left(\mathrm{5}\right)=−\mathrm{1} \\ $$$$\Rightarrow{p}\left({x}\right)=−\frac{{x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)\left({x}−\mathrm{4}\right)}{\mathrm{120}} \\ $$$$\Rightarrow{p}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\frac{\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{3}\right)\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{4}\right)}{\mathrm{120}}=−\frac{\mathrm{7}}{\mathrm{2}^{\mathrm{8}} }=−\frac{\mathrm{7}}{\mathrm{256}} \\ $$
Commented by Tawa11 last updated on 02/Jan/22

$$\mathrm{Great}\:\mathrm{sir}. \\ $$
Commented by Rasheed.Sindhi last updated on 02/Jan/22

$$\mathcal{X}{cellent}\:\mathcal{S}{ir}! \\ $$


Answered by Rasheed.Sindhi last updated on 02/Jan/22

Commented by mr W last updated on 02/Jan/22

Commented by Rasheed.Sindhi last updated on 02/Jan/22

Commented by Rasheed.Sindhi last updated on 02/Jan/22

Commented by mr W last updated on 02/Jan/22

Commented by mr W last updated on 02/Jan/22

Commented by Rasheed.Sindhi last updated on 02/Jan/22

Commented by mr W last updated on 02/Jan/22
