Menu Close

Given-x-x-x-How-many-real-solutions-from-equation-x-x-2-1-with-10-x-10-




Question Number 37627 by Joel579 last updated on 16/Jun/18
Given {x} = x − ⌊x⌋  How many real solutions from equation  {x} + {x^2 } = 1  with −10 ≤ x ≤ 10 ?
Given{x}=xxHowmanyrealsolutionsfromequation{x}+{x2}=1with10x10?
Answered by ajfour last updated on 16/Jun/18
let x=m+h  where m∈Z and h={x}  {x}+{x^2 }=1  ⇒   h+(m+h)^2 −[(m+h)^2 ]=1    h+m^2 +2mh+h^2 −m^2 −[2mh+h^2 ]=1  ⇒ {2mh+h^2 }=1−h  ⇒ h≠ 0  ...
letx=m+hwheremZandh={x}{x}+{x2}=1h+(m+h)2[(m+h)2]=1h+m2+2mh+h2m2[2mh+h2]=1{2mh+h2}=1hh0
Commented by Rasheed.Sindhi last updated on 17/Jun/18
Nice begining!
Nicebegining!
Answered by ajfour last updated on 16/Jun/18
172 real solutions, i think.
172realsolutions,ithink.
Answered by MJS last updated on 16/Jun/18
for x>0 we must solve equations  x∈[0;1[  (x−0)+(x^2 −0)=1 ⇒ x^2 +x−1=0  x∈[1;2[  (x−1)+(x^2 −1)=1 ⇒ x^2 +x−3=0  (x−1)+(x^2 −2)=1 ⇒ x^2 +x−4=0  (x−1)+(x^2 −3)=1 ⇒ x^2 +x−5=0  x∈[2;3[  (x−2)+(x^2 −4)=1 ⇒ x^2 +x−7=0  ...  (x−2)+(x^2 −8)=1 ⇒ x^2 +x−11=0    x∈[n;n+1]  (x−n)+(x^2 −n^2 )=1 ⇒ x^2 +x−(n^2 +n+1)=0  ...  (x−n)+(x^2 −((n+1)^2 −1))=1 ⇒                                            ⇒ x^2 +x−(n^2 +3n+1)=0    we have 1+3+5+7+9+11+13+15+17+19=  = 100 solutions in [0;10]    for x<0 the negative solutions of above  equations count  ⇒ we have no solution in [−1;0[        1 solution in [−2;−1[        3 solutions in [−3;−2[  ...  so we have 100+100−19=181 solutions  in [−10;10]
forx>0wemustsolveequationsx[0;1[(x0)+(x20)=1x2+x1=0x[1;2[(x1)+(x21)=1x2+x3=0(x1)+(x22)=1x2+x4=0(x1)+(x23)=1x2+x5=0x[2;3[(x2)+(x24)=1x2+x7=0(x2)+(x28)=1x2+x11=0x[n;n+1](xn)+(x2n2)=1x2+x(n2+n+1)=0(xn)+(x2((n+1)21))=1x2+x(n2+3n+1)=0wehave1+3+5+7+9+11+13+15+17+19==100solutionsin[0;10]forx<0thenegativesolutionsofaboveequationscountwehavenosolutionin[1;0[1solutionin[2;1[3solutionsin[3;2[sowehave100+10019=181solutionsin[10;10]
Commented by Rasheed.Sindhi last updated on 17/Jun/18
 Nice idea of interval-wise analysis!
Niceideaofintervalwiseanalysis!

Leave a Reply

Your email address will not be published. Required fields are marked *