Question Number 79395 by jagoll last updated on 24/Jan/20
$$\mathrm{given}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{is}\:\mathrm{a}\:\:\mathrm{point}\:\mathrm{on}\:\mathrm{circle} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{6x}+\mathrm{4y}−\mathrm{23}=\mathrm{0}. \\ $$$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{4x}+\mathrm{3y}\: \\ $$
Commented by john santu last updated on 25/Jan/20
$$\Rightarrow\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\left({y}+\mathrm{2}\right)^{\mathrm{2}} =\mathrm{23}+\mathrm{9}+\mathrm{4} \\ $$$$\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\left({y}+\mathrm{2}\right)^{\mathrm{2}} =\mathrm{36} \\ $$$${center}\:{at}\:\left(\mathrm{3},−\mathrm{2}\right),\:{r}=\mathrm{6} \\ $$$$\Rightarrow{let}\:\mathrm{4}{x}+\mathrm{3}{y}\:=\:{k}\:,{this}\:{is}\:{a}\:{tangent} \\ $$$${to}\:{circle}\:.\: \\ $$$${d}=\frac{\mid\mathrm{4}.\mathrm{3}+\left(−\mathrm{2}\right).\mathrm{3}−{k}\mid}{\:\sqrt{\mathrm{4}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }},\:{d}={r} \\ $$$$\mathrm{30}\:=\:\mid\mathrm{6}−{k}\mid\:\Rightarrow\mathrm{6}−{k}=\pm\mathrm{30} \\ $$$${now}\:{we}\:{get}\:{k}_{{min}} =−\mathrm{30} \\ $$$${and}\:{k}_{{max}} =\mathrm{30} \\ $$
Commented by peter frank last updated on 25/Jan/20
$${thank}\:{you} \\ $$