Menu Close

given-x-y-is-a-point-on-circle-x-2-y-2-6x-4y-23-0-find-minimum-and-maximum-value-of-4x-3y-




Question Number 79395 by jagoll last updated on 24/Jan/20
given (x,y) is a  point on circle  x^2 +y^2 −6x+4y−23=0.  find minimum and maximum  value of 4x+3y
given(x,y)isapointoncirclex2+y26x+4y23=0.findminimumandmaximumvalueof4x+3y
Commented by john santu last updated on 25/Jan/20
⇒(x−3)^2 +(y+2)^2 =23+9+4  (x−3)^2 +(y+2)^2 =36  center at (3,−2), r=6  ⇒let 4x+3y = k ,this is a tangent  to circle .   d=((∣4.3+(−2).3−k∣)/( (√(4^2 +3^2 )))), d=r  30 = ∣6−k∣ ⇒6−k=±30  now we get k_(min) =−30  and k_(max) =30
(x3)2+(y+2)2=23+9+4(x3)2+(y+2)2=36centerat(3,2),r=6let4x+3y=k,thisisatangenttocircle.d=4.3+(2).3k42+32,d=r30=6k6k=±30nowwegetkmin=30andkmax=30
Commented by peter frank last updated on 25/Jan/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *