Menu Close

Given-x-y-R-and-x-5-y-3-5-x-3-y-139-If-maximum-and-minimum-of-x-y-xy-is-M-and-n-respectively-then-what-the-value-of-3M-4n-




Question Number 158259 by cortano last updated on 01/Nov/21
Given x,y∈R^+  and ((x/5)+(y/3))((5/x)+(3/y))=139.   If maximum and minimum   of ((x+y)/( (√(xy)) )) is M and n respectively,  then what the value of 3M−4n.
Givenx,yR+and(x5+y3)(5x+3y)=139.Ifmaximumandminimumofx+yxyisMandnrespectively,thenwhatthevalueof3M4n.
Commented by tounghoungko last updated on 01/Nov/21
⇔((x/5)+(y/3))((5/x)+(3/y))=139  ⇔ ((3x)/(5y))+((5y)/(3x))=137 → { (((x/y)=a)),(((y/x)=(1/a))) :}  ⇔ ((3a)/5)+(5/(3a))=137 ...(i)  ⇒((x+y)/( (√(xy)))) = (√(x/y))+(√(y/x)) = (√a)+(1/( (√a)))  ⇒from (i) ⇒9a^2 −2055a+25=0  by Vietha′s rule  { ((a_1 +a_2 =((2055)/9))),((a_1 ×a_2 =((25)/9))) :}  let  { ((max=M=(√a_1 )+(1/( (√a_1 ))))),((min=n=(√a_2 )+(1/( (√a_2 ))) )) :}  (3M−4n)^2 =(3(√a_1 )+(3/( (√a_1 )))−4(√a_2 )−(4/( (√a_2 ))))^2   =(((3a_1 +3)/( (√a_1 )))−4(((a_2 +1)/( (√a_2 )))))^2   =(((3a_1 (√a_2 )+3(√a_2 )−4a_2 (√a_1 )−4(√a_1 ))/( (√(a_1 a_2 )))))^2   =((((√(a_1 a_2 ))(3(√a_1 )−4(√a_2 ))+3(√a_2 )−4(√a_1 ))^2 )/((25)/9))  =(9/(25))(a_1 a_2 (9a_1 +16a_2 −12(√(a_1 a_2 )))+9a_2 +16a_1 −12(√(a_1 a_2 ))+2(√(a_1 a_2 ))(9(√(a_1 a_2 ))−12a_1 −12a_2 +16(√(a_1 a_2 )))
(x5+y3)(5x+3y)=1393x5y+5y3x=137{xy=ayx=1a3a5+53a=137(i)x+yxy=xy+yx=a+1afrom(i)9a22055a+25=0byViethasrule{a1+a2=20559a1×a2=259let{max=M=a1+1a1min=n=a2+1a2(3M4n)2=(3a1+3a14a24a2)2=(3a1+3a14(a2+1a2))2=(3a1a2+3a24a2a14a1a1a2)2=(a1a2(3a14a2)+3a24a1)2259=925(a1a2(9a1+16a212a1a2)+9a2+16a112a1a2+2a1a2(9a1a212a112a2+16a1a2)
Answered by mr W last updated on 01/Nov/21
((x/5)+(y/3))((5/x)+(3/y))=139  (5/3)((y/x))+(3/5)((x/y))+2=139  let t=(y/x)  25t+(9/t)=137×15  25t^2 −2055t+9=0  t=((3(137±3(√(2085))))/(10))  P=(((x+y)/( (√(xy)))))^2 =(x/y)+(y/x)+2=t+(1/t)+2  P_1 =((3(137+3(√(2085))))/(10))+((10)/(3(137+3(√(2085)))))+2  =((2359−24(√(2085)))/(15))=n^2   P_2 =((3(137−3(√(2085))))/(10))+((10)/(3(137−3(√(2085)))))+2  =((2359+24(√(2085)))/(15))=M^2   3M−4n=3(√((2359+24(√(2085)))/(15)))−4(√((2359−24(√(2085)))/(15)))≈8.962
(x5+y3)(5x+3y)=13953(yx)+35(xy)+2=139lett=yx25t+9t=137×1525t22055t+9=0t=3(137±32085)10P=(x+yxy)2=xy+yx+2=t+1t+2P1=3(137+32085)10+103(137+32085)+2=235924208515=n2P2=3(13732085)10+103(13732085)+2=2359+24208515=M23M4n=32359+2420851542359242085158.962

Leave a Reply

Your email address will not be published. Required fields are marked *