Menu Close

Given-x-y-real-number-such-that-0-lt-y-x-lt-1-2-Find-minimum-value-of-2y-x-y-3x-x-2y-




Question Number 150963 by EDWIN88 last updated on 17/Aug/21
Given x ,y real number such that   0<(y/x)<(1/2). Find minimum value  of ((2y)/(x−y)) +((3x)/(x+2y)) .
Givenx,yrealnumbersuchthat0<yx<12.Findminimumvalueof2yxy+3xx+2y.
Answered by john_santu last updated on 17/Aug/21
 let (y/x) = t ⇒f(t)=((2t)/(1−t))+(3/(1+2t))   where 0<t<(1/2).  taking derivative of f(t)  f ′(t)=(2/((1−t)^2 ))−(6/((1+2t)^2 )) = 0  ⇒(1+2t)^2 =3(1−t)^2   ⇒4t^2 +4t+1=3−6t+3t^2   ⇒t^2 +10t−2=0  ⇒(t+5)^2 −27=0 ⇒t=−5±3(√3)  f(t)_(min)  when t=−5+3(√3)  so min f(t)=((2(−5+3(√3)))/(1−(−5+3(√3))))+(3/(1+2(−5+3(√3))))  min f(t)=((6(√3)−10)/(6−3(√3)))+(1/( 2(√3)−3))  min f(t)= (((6(√3)−10)(6+3(√3)))/9)+((2(√3)+3)/3)  min f(t)=((6(√3) −6)/9)+((2(√3)+3)/3)  min f(t)=((2(√3)−2)/3)+((2(√3)+3)/3) =((4(√3)+1)/3)
letyx=tf(t)=2t1t+31+2twhere0<t<12.takingderivativeoff(t)f(t)=2(1t)26(1+2t)2=0(1+2t)2=3(1t)24t2+4t+1=36t+3t2t2+10t2=0(t+5)227=0t=5±33f(t)minwhent=5+33sominf(t)=2(5+33)1(5+33)+31+2(5+33)minf(t)=6310633+1233minf(t)=(6310)(6+33)9+23+33minf(t)=6369+23+33minf(t)=2323+23+33=43+13

Leave a Reply

Your email address will not be published. Required fields are marked *