Menu Close

Given-y-x-x-y-2-find-the-value-of-dy-dx-1-1-




Question Number 99960 by bemath last updated on 24/Jun/20
Given y(√x)+x(√y) = 2. find the value of  (dy/dx) ∣_((1,1))  = ?
Givenyx+xy=2.findthevalueofdydx(1,1)=?
Commented by Dwaipayan Shikari last updated on 24/Jun/20
−1
1
Answered by Rio Michael last updated on 24/Jun/20
 (√x) (dy/dx) + (y/(2(√x))) + (x/(2(√y))) (dy/dx) + (√y) = 0  ⇒  (√1) (dy/dx)∣_((1,1))  +(1/(2(√1))) + (1/(2(√1))) (dy/dx)∣_((1,1))  + (√1) = 0
xdydx+y2x+x2ydydx+y=01dydx(1,1)+121+121dydx(1,1)+1=0
Answered by 1549442205 last updated on 24/Jun/20
Derivative two sides of the givenwewe equation  by x we obtain y^′ (√x)+(y/(2(√x)))+(√y)+((xy′)/(2(√y)))=0  ⇒y′((√x)+(x/(2(√y))))=−((y/(2(√x)))+(√y))⇒y′=((−(2(√(xy))+y))/(2(√(xy))+x))  ⇒y′∣_((1,1)) =((−(2(√(xy))+y))/(2(√(xy))+x))∣_((1,1)) =((−3)/3)=−1
Derivativetwosidesofthegivenweweequationbyxweobtainyx+y2x+y+xy2y=0y(x+x2y)=(y2x+y)y=(2xy+y)2xy+xy(1,1)=(2xy+y)2xy+x(1,1)=33=1

Leave a Reply

Your email address will not be published. Required fields are marked *