Menu Close

Given-z-6-2-3-i-find-the-two-least-value-of-n-such-that-z-n-z-purelly-imaginary-




Question Number 112737 by bemath last updated on 09/Sep/20
Given z=−6+2(√3) i  find the two least value of n such  that z^n .z^−  purelly imaginary.
Givenz=6+23ifindthetwoleastvalueofnsuchthatzn.zpurellyimaginary.
Commented by bemath last updated on 09/Sep/20
thank you both sir
thankyoubothsir
Answered by mathmax by abdo last updated on 09/Sep/20
z =−6 +2(√3)i ⇒∣z∣ =(√(36+12))=(√(48))=4(√3) ⇒z =4(√3){((−6)/(4(√3))) +((2(√3))/(4(√3)))i}  =4(√3){ ((−3)/(2(√3))) +(1/2)i} =4(√3){−((√3)/2) +(1/2)i} =4(√3)e^(i(((5π)/6)))  ⇒  z^n  =(4(√3))^n  e^(i((5nπ)/6))  ⇒z^n .z^−  =(4(√3))^n  e^(i((5nπ)/6)) .4(√3)e^(−i((5π)/6))   =(4(√3))^(n+1 )  e^(i((5/6)(n−1))π)  =(4(√3))^(n+1)  {cos(((5(n−1)π)/6))+isin(((5(n−1)π)/6))}  z^n .z^−   ∈ iR ⇔cos(((5(n−1)π)/6))=0 ⇔((5(n−1)π)/6) =(π/2) +kπ ⇒  ((5n−5)/6) =(1/2) +k ⇒5n−5 =3 +6k ⇒5n =8+6k ⇒n =((6k+8)/5) we search k /   5 divide 6k+8  ....
z=6+23i⇒∣z=36+12=48=43z=43{643+2343i}=43{323+12i}=43{32+12i}=43ei(5π6)zn=(43)nei5nπ6zn.z=(43)nei5nπ6.43ei5π6=(43)n+1ei(56(n1))π=(43)n+1{cos(5(n1)π6)+isin(5(n1)π6)}zn.ziRcos(5(n1)π6)=05(n1)π6=π2+kπ5n56=12+k5n5=3+6k5n=8+6kn=6k+85wesearchk/5divide6k+8.
Answered by john santu last updated on 09/Sep/20
(1) z = −6+2(√3) i = re^(iθ)   → r=(√(36+12)) = (√(48)) = 4(√3)  →tan θ = ((2(√3))/(−6)) = ((√3)/(−3)), θ=((5π)/6)       z = 4(√3) e^(((5π)/6)i)   (2)z^−  = −6−2(√3) i = re^(iα)          →tan α= ((−2(√3))/(−6)) = ((√3)/3), α=((7π)/6)         z^−  = 4(√3) e^(((7π)/6)i)    (3) z^n .z^−  = (4(√3) e^(((5π)/6)i) )^n (4(√3) e^(((7π)/6)i) ) = 0+bi  →(4(√3))^(n+1) (cos (((5πn)/6)+((7π)/6))+i sin (((5πn)/6)+((7π)/6)))=0+bi  we get cos ((((5n+7)π)/6)) = 0  → cos ((((5n+7)π)/2)) = cos ((π/2))  → (((5n+7)π)/6) = ± (π/2)+ m.2π  →(5n+7)π = ± 3π +k.2π  → { ((5n+7 = 3+2k , 5n=−4+2k)),((5n+7=−3+2k, 5n=−10+2k)) :}  →5n = −10+2k  { ((k=10, n = 2)),((k=15, n = 4)) :}
(1)z=6+23i=reiθr=36+12=48=43tanθ=236=33,θ=5π6z=43e5π6i(2)z=623i=reiαtanα=236=33,α=7π6z=43e7π6i(3)zn.z=(43e5π6i)n(43e7π6i)=0+bi(43)n+1(cos(5πn6+7π6)+isin(5πn6+7π6))=0+biwegetcos((5n+7)π6)=0cos((5n+7)π2)=cos(π2)(5n+7)π6=±π2+m.2π(5n+7)π=±3π+k.2π{5n+7=3+2k,5n=4+2k5n+7=3+2k,5n=10+2k5n=10+2k{k=10,n=2k=15,n=4

Leave a Reply

Your email address will not be published. Required fields are marked *